

Campion College

Phase 2: Detailed Site Investigation

119 Rausch Street, Old Toongabble, NSW 2146

4 April 2016

Experience comes to life when it is powered by expertise

This page has been left intentionally blank

Phase 2: Detailed Site Investigation

Prepared for Campion College

Prepared by
Coffey Environments Australia Pty Ltd
Level 19, Tower B, 799 Pacific Highway
Chatswood NSW 2067 Australia
t: +61 2 9406 1193 f: +61 2 9406 1004
ABN: 65 140 765 902

4 April 2016

ENAURHOD04835AB

Quality information

Revision history

Revision	Description	Date	Originator	Review
D1	Initial draft	23/03/2016	M. Locke	S. Gunasekera
V1	Final	04/04/2016	M. Locke	S. Gunasekera

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Draft 1	1	PDF	Campion College c/o Gardner WetherIII Associates Pty Ltd	23/03/2016
Final	1	PDF	Campion College c/o Gardner Wetherill Associates Pty Ltd	04/04/2016

1

Coffey Environments Australia Pty Ltd ABN: 65 140 765 902

Table of contents

1.	Introduction	1
2.	Site Location and Setting	3
3.	-	
4.		
5.	Sampling plan and methodology	11
6.	investigation levels	15
7.	Quality assurance / quality control	21
8.	Field observations and analytical results	24
9.	Conceptual site model	27
10.	Conclusions & recommendations	31
11.	References	35

Figures

Figure 1 - Site Location Plan

Figure 2 - Site Layout Plan

Figure 3 - Site Investigation Location Plan

Appendices

Appendix A - Proposed Development Drawings

Appendix B - Borehole Logs

Appendix C - Equipment Calibration Records

Appendix D - Well Sampling Records

Appendix E - Laboratory Test Certificates & Chain of Custody Documentation

Appendix F - Laboratory Results: Summary Tables

1. Introduction

1.1. General

This report presents the findings of a Phase 2 Detailed Site Investigation (DSI) prepared by Coffey Environments Australia Pty Ltd (Coffey) for Campion College, which located at 119 Rausch Street, Old Toongabbie, NSW (the 'site').

The assessment was commissioned by Gardner Wetherill Associated Pty Ltd (GWA) on behalf of Campion College, and was undertaken in general accordance with Coffey's fee proposal dated 8th December 2015 (Ref: ENAURHOD04835AB-P01).

The site location is shown in Figure 1.

1.2. Project Background

Campion College is a tertiary college seeking to redevelop parts of the site, including the provision of additional educational, library, sporting and accommodation facilities, and a chapel. A basement car park will also be provided beneath the proposed library.

To support the Development Application, Coffey undertook a desktop contamination assessment for the site, which was presented in the following report:

 Coffey (Nov 2015); Preliminary Site Contamination Assessment, Campion College 119 Rausch Street, Old Toongabbie, NSW 2146 (Report ref. ENAURHOD04835AA-R01a, dated 26 November 2015).

Based on findings of the above assessment, the site as a whole was considered to have a low potential risk of significant contamination being present. However, it was assessed that the current and historic uses of the northwestern portion of the site gives rise to an increased potential for contamination to be present. Specifically, the following potential sources of contamination were identified:

- An old diesel bowser, tank fill/dip points and suspected below ground fuel distribution lines and an underground storage tank (UST) that possibly remains in-situ.
- A soil stockpile containing various wastes and fragments of fibre cement sheeting suspected to contain asbestos (i.e. Bonded ACM).
- Uncontrolled storage of miscellaneous wastes.
- Storage of small quantities of paint, solvents, and chemicals within a maintenance workshop.

The Preliminary Site Contamination Assessment recommended that a Phase 2 Detailed Site Investigation is undertaken to assess ground conditions in the vicinity of the above potential sources of contamination.

1.3. Objectives

In summary, the objectives of the assessment are to:

- Conduct a programme of intrustve investigations within the northwestern portion of the site to
 assess the significance of contamination arising from the potential sources of contamination
 identified within the Preliminary Site Contamination Assessment (Coffey Nov 2015).
- Interpret the findings of the intrusive investigation works and provide an opinion on the suitability for the site for the proposed development in accordance with State Environment Planning Policy No. 55 – Remediation of Land (SEPP55).

1.4. Proposed Development

Campion College are seeking to expand the facilities of the existing tertiary college, and have lodged a Development Application to redevelop part of their site to provide additional educational, library, sporting and accommodation facilities, and a chapel. A single storey basement car park will also be provided beneath the proposed library. The extent of the proposed development is outlined within plans provided in Appendix A.

The proposed land uses identified within the northwestern portion of the site will comprise student accommodation blocks 'House 2' and 'House 3'. These accommodation blocks comprise bedrooms for students attending the college, with a common kitchen, laundry and study rooms within the ground floor. It is understood that land surrounding the footprint of these blocks shall comprise soft landscaped areas and paved footpaths. It is noted that the library and basement car park is situated approximately 15m south of the investigation area.

2. Site Location and Setting

2.1. Site location and identification

The generic site location information relating to the site is summarised in Table 2.1. The location and site layout plan of the site is shown in Figures 1 and 2, respectively.

Table 2.1: Site Identification

Site Address:	Property No. 119 Rausch Street, Old Toongabble, NSW 2146
Site Identification:	Lot 111 of Deposit Plan (DP) 749237
Current Zoning:	Zone R2 – Low Density Residential under Parramatta City Council Local Environmental Plan 2011
Area	Total Area of College Site - 4.2 ha
	Investigation Area — approximately 0.25ha

2.2. Site description

The site comprises a tertiary college with the main college building, library and classrooms established on the western portion of the site. The eastern portion of the site remains undeveloped, landscaped grounds. A small pond is located on the north-eastern portion of the site. A detailed description of the college grounds is provided within the Preliminary Site Contamination Assessment (Coffey, Nov 2015), which was based on a site walkover survey and discussions with site representatives on the 13th November 2015.

As summary of the key features of the northwestern area of the site relevant to the investigation works conducted as part of this assessment are provided below:

A cluster of three small structures are present
within this part of the site. The largest,
western-most structure is used as a workshop
and storage area. Materials stored within this
structure included old wooden furniture,
paints, soil, pesticides/herbicides/fertiliser and
landscaping equipment. The small rectangular
structure situated immediately east of the
workshop/storage building is used as a
gymnasium where weight-lifting equipment,
stationary bikes and rowing machines are
stored. A shipping container situated to the
north of these structures is used to store
documents and office materials.

Photo 1: View of gymnasium and storage sheds located within northwestern portion of the site.

- Two metal waste skip containers (bins) were observed in this area, which are used to store
 putrescible and recyclable wastes generated by the college. We understand that these skip bins
 are routinely collected by a waste management provider for offsite disposal.
- An old 'Mobil Distillate' fuel bowser is present in this area edjacent to gymnasium. A rectangular concrete slab lies adjacent to the bowser measuring an area of approximately 4m by 4m. Two small caps are present on the slab indicate that an underground storage tank (UST) is present beneath the slab. The small caps were removed as part of the field investigation conducted as part of this study, to assess their purpose. One of the caps revealed a graduated dipstick, which provided a strong indication that a UST remains in-sltu. The Coffey field engineer supervising the investigation works confirmed the base of the tank was 1.88mbgs and there was a small volume of water in the base of the tank. The water dld not contain visible sheens or odours, suggesting the UST does not contain clearly perceptible petroleum residues.

Photo 2: concrete slab situated over UST.

Disused fuel bowser located adjacent to waste skip bin.

Photo 3: UST dipstick located beneath cap on concrete slab.

- During the walkover conducted as part of the Preliminary Site Contamination Assessment (Coffey, Nov 2015), various waste materials were stockpiled/stored in open areas adjacent to buildings/shipping containers including wooden furniture, metal, old electricity wood poles, plastic containers, old domestic appliances and metal pipes. Wastes were observed across the grassed area located to the north of the structures including plastic, metal, brick, wood, electricity poles and a small stockpile of soil with fragments of fibre cement sheeting suspected to contain asbestos (Bonded ACM).
- As part of the field investigation works, the investigation area was re-inspected to assess the distribution of visible asbestos containing materials (ACM). This inspection was undertaken by an experienced Coffey engineer on the 26th February 2016 following the removal of overgrown vegetation. In summary no visible ACM were identified within the investigation area during the inspection.

2.3. Description of surrounding land uses

The existing college buildings are located to the south and south east of the workshop and storage structures noted above. The eastern portion of the site comprises largely undeveloped landscaped grounds, with a small pond and access road linking the college building with Wooberry Place.

In summary, the site is situated in an area predominated by low density residential land uses. Table 2.2 provides a summary of the land uses surrounding the site.

Table 2.2: Summary of land uses surrounding the college

Direction	Land Uses
North	 Land immediately to the north of the site and further north to Hurley Street comprises residential properties.
West	 Land Immediately to the west comprises residential properties, Jago Place and Guiren Place and further west Hurley Street.
East	Land immediately to the east comprises residential properties and further east Austin Woodbury Place and Reynolds Street.
South	Land immediately to the south comprises residential properties and further south Rausch Street and Austin Woodbury Place.

2.4. Geology, hydrogeology and hydrology

The anticipated geological sequence at the site will comprise fill materials or residual clay soil, overlying Ashfield Shale bedrock (Geological Survey of New South Wales, 1991; Sheet 9030). The Ashfield Shale Formation comprises dark-grey to black claystone-siltstone and fine sandstone-siltstone laminite. Given the anticipated geological setting within the site, it is assessed that acid sulphate soils are not expected within the site

The topography of the investigation site was observed to be relatively level and it is expected that infiltration would percolate into the sub-surface soils (where permeability allows) or pool at the surface. Topographic survey records show a slight fall in ground levels towards the west and northwesterly direction.

Groundwater was anticipated to exist within fractures of underlying shale bedrock or as perched lenses in the upper soil profile or at the soil/rock interface, particularly after periods of rainfall. No licensed groundwater abstraction bores were located within a 500m around the site (Coffey, Nov 2015).

A pond is located on the eastern portion of the campus, approximately 180m east of the investigation area. The site is situated approximately 380m south of Toongabbie Creek. The confluence of Girraween and Pendle Creek is located approximately 720m west of the site.

2.5. Summary of historic land uses

A detailed appraisal of the historic land uses is presented in the Preliminary Site Contamination Assessment (Coffey, Nov 2015). A summary of historic land uses is presented below:

- Available records indicate that the site was used for agricultural purposes between 1794 and 1936, which included poultry and dairy farming.
- Between 1936 and 1997, the site formed part of a Marist Seminary and Centre with diary and farm activities ceasing in circa 1960s. The main college building at the site was built during this period.

Phase 2: Detailed Site Investigation Camplon College 119 Rausch Street, Old Toongabble, NSW 2146

- Between 1997 and 2001, the land belonged to the Diocese of Parramatta. At this time, the site
 was mainly used for conferences and meetings.
- Campion Foundation Limited acquired the land in 2001 and Campion College Australia started
 operations in 2006 following minor refurbishments to the existing buildings.
- The earliest available aerial photographs indicate that land surrounding the site in the early 1940's was predominantly open space with low density residential and/or commercial land uses to the wast.
- The site was re-developed between 2001 and 2006 to add a classroom building and to set up the library in two Nissen army huts. These huts are no longer on site.
- Land eurrounding the site was developed as residential land use between 1950s and 1990s, with agricultural uses noted prior to the 1950's.

Limited information exists regarding the UST and associated fuel bowser on site. Workcover NSW confirmed that they held no license records to store dangerous goods within the site (Coffey, Nov 2015). Anecdotal evidence provided by representatives of the college indicates that the bowser was present on-site at the time the College was established and that it is unknown if a UST is present on site. It was understood that the UST and bowser were installed on site by Marists to provide a source of fuel for their vehicles and farm equipment.

3. Preliminary conceptual site model

Table 3.1 presents a preliminary conceptual site model, based on the known historic site uses and observations made during recent site walkover surveys.

Phese 2: Detailed She Investigation Campion College 119 Rauson Street, Old Toongabble, NSW 2146

Table 3.1: Preliminary Conceptual Site Model

Phase 2: Detailed Site Investigation Campion College 119 Reuach Street, Old Toongabbie, NSW 2148

Cemments	An old first bowert is present within the notify-weetern portion of the site. A concrete sinb ediporant to the boweer with fill-tip points indicated at UST remains in-eits. Accidental spillages and product loss from boweer, both and dispensing lines has the potential to neath in againtum contentration. Fluid has the potential to pose hastin risks where they are exposed to surface soils impacted by spillages. Votatis components of facts can also pose health risks who they are exposed to surface soils impacted by spillages. Votatis components of facts can also pose health risks who they are exposed to surface soils for the transferation also has the potential to mobilities and bound contemnisation, posing potential risks to groundwater undersying the site, and surface water receptors. Infiltration also has the potential to mobilities and bound contemnisation, posing potential risks to groundwater undersying the site, and surface water receptors.	Whilet fill meterials may have been imported to the site historically, observations fracts dusting the site walkower and interfer sequence of site development suggests that the substantial quantities of its materials have not been imported to site. It is sessessed that this (if present) is unifiely to pose a significant contamination source. As noted above, observations made during the site walkover indicate certain components of the waste materials and soil stocklikes within its north-western area of the site have the potential to pose health risks vis the darmal contact and shallsticar/ingestion patitivarys.
Receptors	Current Site Users Future Site Users Groundwater undertying the aits Surface water (off atta)	Courent Sile Users Gound workers (construction) Future Sile Users Recurd workers (Mure matriterance event)
Polential Exposura Pathwaya	Ingression of duets and vepours Dermal contact Lateral groundwaler migration about probrential flow petitivelys. Stutions water ruroff	Dermal content ingestion/inhalation of dusts inhalation of flares
Confamiliants of Potential Concern	TPH, BTEX, PAN and lead.	TPH, BTEX, PAH, Demnal contact Metals, OCP/OPP, Ingestiton/Inhais Inheistiton of the
Primeted Contembrating Activity	Historic use of fuel on the north-seatern portion of the else	Fill sectations and spaces

Notes:

Metals = energic, dromlum, cadmium, copper, lead, nichel, mercury and zinc.

TPH = Total Petroleum Hydrocarbon

BTEK = Berczme, Toterne, Effylberzene and Xylemes

OCP = Organochtorine Pesticides

OPP = Organophosphasiphasis

PAH = Polycyclic Aromatic Hydrocarbons

4. Project data quality objectives

As stated in Section 5 of Schedule B2 – Guideline on Site Characterisation of the *National Environment Protection (Assessment of Site Contamination) Measure 1999* (the 'ASC NEPM') (NEPC 2013), the data quality objectives (DQO) process is used to define the type, quantity and quality of data needed to support decisions relating to the environmental condition of a site.

The seven-step DQO process adopted for this assessment is provided below:

Step 1: State the Problem

The primary objectives of this assessment are to assess:

- Evaluate whether a UST is present within the northwestern part of the site, and assess whether the historic storage of fuel has resulted in contamination impacts.
- Assess the distribution of visible ACM within the northwestern part of the site.
- Interpret the findings of the investigations and provide an opinion on whether the site is suitable for the proposed development from a contamination perspective, in accordance with SEPP 55.

Based on this, the main problems are:

- What is the most appropriate methods of investigation to assess the types of contamination anticipated within the northwestern part of the site?
- How many sampling locations should be established within the site, and where?
- To what depths should sampling locations be extended to?
- At what depth should soil samples be collected?
- Are there restrictions present that may influence the outcome of the investigation, or location of the sampling point?
- What are the contaminants of potential concern?

Step 2: Identify the Decision

Is the site suitable for the proposed residential redevelopment?

Step 3: Identify Inputs to the Decision

The primary inputs to assessing the above include:

- Information presented in the Preliminary Site Contamination Assessment (Coffey, Nov 2015).
- Observations made by Coffey during field investigations.
- Results of current investigations undertaken on-site.
- Relevant legislation and regulatory guidelines.

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

Step 4: Define the Study Boundaries

The boundary of the investigation area is shown in Figure 2. The vertical boundary is defined by the expected extent of impact.

Step 5: Develop a Decision Rule

The decision rule to assess the suitability of the site will be as follows:

- Quality Assurance / Quality Control (QA/QC) assessment Indicates that the data is usable; and
- Where contaminant concentrations are reported below the adopted health and environmental assessment criteria, or
- No plausible exposure mechanisms where human or environmental receptors may be exposed to
 potentially contaminated media in the context of the proposed future use of the site.

Step 6: Specify Limits of Decision Errors

There are two sources of error for input to decisions:

- Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and
- Measurement errors, which occur during sample collection, handling, preparation, analysis and data reduction.

The null hypothesis for this study is:

 Contaminant concentrations within the soil and groundwater beneath the site are less than the adopted investigation levels.

These errors may lead to the following decision errors:

- Type I deciding that the soil/groundwater is not contaminated and, therefore, the site is suitable for the proposed residential development when the reverse is true; and
- Type II deciding that the soil is contaminated and, therefore, the site is not suitable for the
 proposed residential development when the reverse is true.

The acceptable limit on decision errors is a 5% probability of a false negative (i.e. assessing that the average concentrations of COPC in are less than the adopted soil investigation levels when they are actually greater than the investigation levels).

Where data sets are sufficiently populated, the 95% Upper Confidence Limit (UCL) of the arithmetic mean will be used to calculate this probability. The 95% UCLs are to be less than the investigation level and standard deviation of the sample population shall be less than 50% of the investigation level.

The investigation levels for assessment are nominated in Section 6 of this report.

Step 7: Optimise the Design for Obtaining Data

Based on the previous Steps 1 to 6 of the DQO process, the optimal design for obtaining the required data is presented in the following sections (i.e. proposed field and laboratory programs).

5. Sampling plan and methodology

5.1. Soil sampling methodology

Soil sampling was undertaken by experienced Coffey environmental scientists in accordance with the sampling methodology and QA / QC procedures summarised in Table 5.1.

Table 5.1: Soll Sampling Methodology

Activity	Details
Date of Fieldwork	26 th February 2016
Assessment Locations	Soil sampling locations are shown on Figure 3.Sampling locations included the following:
	 Hand auger boreholes HA01 to HA05 were drilled in areas adjacent to the structures located in the northwestern corner of the site to assess the presence of contaminated fill material within the upper portion of the subsurface.
	 Boreholes BH01 to BH03 were drilled in areas triangulating the former UST and bowser. Each of these boreholes were converted to a groundwater monitoring well.
Borehole Drilling	Boreholes HA01 to HA05 were drilled using a hand auger to depths between 0.5m and 1.0mbgs. Disturbed soil samples were collected directly from the hand auger at the required depths.
	Boreholes BH01 to BH03 were drilled using a mechanical drill rig equipped with disposable push tubes. Discrete soil samples were collected from the dedicated push tube sleeves to minimise the potential for cross contamination. Push tube drilling techniques refused on shale bedrock at 2mbgs. Each borehole was subsequently advanced to a depth of 6.5mbgl using solid flight augers. Samples of shale cuttings were collected directly from the auger bit for soil headspace measurements and laboratory analysis.
Soil Logg ing	Soil was logged in general accordance with the relevant Coffey Standard Operating Procedure (SOP) and the United Soil Classification System (USCS) by qualified and experienced Coffey scientists.
	The presence and absence of stained or odorous soils, or other man-made inclusions were also noted on the borehole logs. Borehole logs are presented in Appendix B.
Sample Handling & Transportation	Sample collection, storage and transport were in general accordance with the relevant Coffey SOP. Soil samples collected for chemical analysis were immediately placed into laboratory supplied jars and filled to capacity, with Teflon lined seeks to limit volatile loss and placed into an ice chilled cooler.
	Soil samples collected for asbestos analysis were placed into ziplock plastic bags and securely sealed.
	Samples were dispatched to NATA accredited laboratories under chain of custody control.
Soil Screening for volatile organic compounds	Soil headspace screening was carried out for the presence of VOC using a Photo-ionisation Detector (PID) fitted with a 10.6eV lamp which was calibrated by the equipment supplier at the start of the fieldworks to 0.0ppm and 100ppm using isobutylene calibration gas. Field

Activity	Details Street Living Control of
	calibration records are presented in Appendix C.
	Soil headspace screening was undertaken on soils at discrete depths at each borehole location by placing a small quantity of soil inside a zip-locked plastic bag and sealed. The sample was agitated and then the plastic bag was plerced using the tip of the PID. The readings on the PID were observed and the maximum reading recorded on the field log sheet. The PID readings are presented in each borehole log.
QA/QC Samples	To measure the accuracy and precision of the data generated by the field and laboratory procedures carried out in this assessment, the following additional samples were collected for QA / QC purposes:
	 one intra-laboratory duplicate soil sample (DUP1) analysed by the project laboratory;
	 one inter-laboratory triplicate soil sample (DUP1A) analysed by a secondary laboratory;
	 one trip blank sample (TB 160225-16) to assess whether volatile contamination may have been introduced to samples during handling and shipping; and
	 one trip spike sample (TS 160225-16) analysed to assess the loss of volatiles from samples during transit.
Deconternination of sempling equipment	Non-disposable sampling equipment was decontaminated with approximately 5% Decon 90 solution in potable water, and rinsed with potable water prior to use and between each sample location.
	Soil samples were collected from the sampling equipment using a new pair of nitrite gloves for each sample.
Disposal of soil cuttings	Soil cuttings from each borehole were used as backfill to reinstate each borehole upon completion of sampling. Surplus soil was placed in a sealed drum for offsite disposal.

5.2. Groundwater sampling methodology

Groundwater sampling was undertaken in accordance with the sampling methodology summarised in Table 5.2.

Table 5.2: Groundwater Sampling Methodology

Activity	Detail / Comments
Date of Work	Monitoring wells were installed on 26 th February 2016. Groundwater sampling was carried out on 3 rd March 2016.
Well Construction and Development	Boreholes BH01, BH02 and BH03 were converted into groundwater monitoring wells, denoted MW01, MW02 and MW03, respectively. The location of each monitoring well is shown on Figure 3.
	The monitoring wells were constructed of 50mm diameter screw threaded PVC casing, with a length of machine slotted PVC screen positioned to intercept the groundwater table. As distinct water strikes were not observed during drilling, the top of the well screen was positioned below the estimated depth of the UST (i.e. 1.9mbgs), so as to intersect water

Activity	Detail / Comments
	which may have been impacted by petroleum hydrocarbons.
	The well annulus was backfilled with 2mm to 3mm diameter gravel from the base of the well to approximately 0.5m above the top of the well screen. A 1m thick bentonite seal was placed over the gravel pack, with the remainder of the bore reinstated with soil cuttings. The well casing was extended to surface and covered with a flush-mounted cast iron road box, set within concrete. The monitoring well construction details are presented within the bore logs in Appendix B. Well development records are presented in Appendix D.
Well Gauging	Monitoring wells were gauged on the 3 rd March 2016 using an oil/water interface probe (IP) to assess the depth to groundwater and the presence (and thickness) of PSH, if any. The IP was calibrated prior to use. Calibration certificates are presented in Appendix C.
	The IP was decontaminated between each measurement.
Well Purging and Sampling	Monitoring wells were purged and sampled in general accordance with the relevant Coffey SOP.
	Prior to sampling, monitoring wells were purged using a disposable bailer until at least three well volumes of water were removed and water quality parameters stabilised (±10%), or the well was purged dry, whichever occurred first.
	Field groundwater quality parameters were recorded between each well volume removed from the well.
	The water quality meter was calibrated prior to use. Calibration certificates are presented in Appendix C.
Sample Handling and Transportation	Sample collection, storage and transport were conducted in general accordance with the relevant Coffey SOP.
	Groundwater samples were immediately placed into laboratory supplied bottles, with Teffon lined seals and placed into an ice chilled cooler. Sample containers for analysis of volatile compounds were filled to eliminate headspace. Samples collected for heavy metals were filtered in the field using disposable 0.45micron filter.
	Samples were dispatched to NATA accredited laboratories under chain of custody control.
QA/QC Samples	To measure the accuracy and precision of the data generated by the field and laboratory procedures carried out in this assessment, the following additional samples were collected for QA/QC purposes:
	 One intra-laboratory duplicate groundwater sample (DUP1) analysed by the primary laboratory. One rineate sample (RB1) collected off the water quality meter following decontamination to assess the effectiveness of field decontamination process;
	One trip blank sample (TB160301-2) analysed to assess whether contamination may have been introduced to samples during handling and shipping; and One trip splice sample (TS160301-2) analysed to assess the loss of volatiles from

Activity	Detail / Comments
	samples during transit.
Decontamination of sampling equipment	All non-disposable sampling equipment was decontaminated with approximately 5% Decon 90 solution in potable water, and rinsed with potable water prior to use and between each sample location.
Disposal of purged groundwater	Purged groundwater was placed in sealed drums for appropriate off-site disposal by a licensed contractor.

5.3. Laboratory analysis

Laboratory analysis of soll and groundwater samples was carried out by NATA accredited laboratories as follows:

- Primary laboratory: Eurofins | MGT at Lane Cove West, NSW
- Secondary laboratory: ALS in Smithfield, NSW

6. Investigation levels

6.1. Basis for assessment criteria

The assessment criteria applied in this project were sourced from:

- (NEPC, 2013); Schedule B1 'Guideline on the Investigation Levels for Soil and Groundwater' of the National Environment Protection (Assessment of Site Contamination) Measure 1999, (ASC NEPM)
- CRC Care Technical Report No.10: Health Screening Levels for Petroleum Hydrocarbons in Soil & Groundwater (Friebel & Nadebaum, 2010).
- ANZECC & ARMCANZ (2000), National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

6.2. Soil assessment criteria

6.2.1. Health-based investigation and screening levels

Schedule B1 of the ASC NEPM (NEPC, 2013) states that 'the selection and use of investigation levels should be considered in the context of the iterative development of a Conceptual Site Model'. Based on information describing the proposed development, Coffey considers the proposed future use of the investigation area is broadly consistent with the generic low density residential setting (HIL A) defined in Schedule B7 of ASC NEPM (NEPC, 2013) given that:

- The primary human receptor within the proposed development will comprise teenage or adult students, who attend the adjoining college. Students are anticipated to reside within the accommodation during term periods that are estimated to be up to 40weeks per annum.
- Areas of gardens and accessible soils will be provided surrounding each domitory. It is noted that
 a vegetable patch exists adjacent to the investigation, and it is considered feesible that areas
 surrounding the domitories may be used to grow small quantities of fruit/vegetables for human
 consumption.

Direct contact HSL for low density residential land uses (HSL-A) presented within CRC Care Technical Report No.10 (Friebel & Nadebaum, 2010) were adopted for non-volatile petroleum hydrocarbons (i.e. >C₁₆+).

The HiLs for heavy metals, PAH, OCP, OPP and non-volatile petroleum hydrocarbons in soils are summarised in Table 6.1.

Table 6.1: Summary of HILs in Soil

Analyte	HiLs for Residential A (mg/kg)
Arsenic (total)	100
Cadmium	20
Chromium (VI) ¹	100
Copper	6,000
Lead	300
Mercury (inorganic)	40
Nickel	400
Zinc	7,400

Analyte	HiLs for Residential A (mg/kg)	
Benzo(a)pyrene as TEQ ²	3	
Total PAHs	300	
Aldrin + Dieldrin	6	
Chlordane	50	
DDT+DDD+DDE	240	
Endosulfan	270	
Endrin	10	
Heptachlor	6	
HCB	10	
Methoxchlor	300	
Toxaphene	20	
Chlorpyrifos	160	
>C ₁₆ -C ₃₄ (F3)	4,500 ³	
>C ₃₄ -C ₄₀ (F4)	6,300 ³	

Notes:

- Soil was tested for Total Chromium, which comprises both Chromium (III) and Chromium (VI) valence states. The HIL for 1. Chromium (VI) has been adopted as a conservative assessment threshold. TEQ = Toxicity Equivalence Quotient
- 3. 3. Soil Health Screening Levels for Direct Contact (Friebel & Nadebaum, 2010)

Volatile TRH fractions, BTEX and naphthalene concentrations were assessed against the HSLs presented in Schedule B1 of the ASC NEPM (NEPC, 2013) for vapour intrusion from the relevant depth and soil matrix for the following exposure scenario:

"Low to high density Residential" (HSL A & B).

The HSLs for TRH, BTEX and naphthalene in soils are summarised in Table 6.2. Given the investigation recorded sandy fill over clayey residual solls, the assessment has adopted screening levels for a sandy soil, as a conservative measure.

Table 6.2: Summary of HSLs in Soil

	HSL A & B Low to high density Residential (for sandy solis) (mg/kg)				
Chemical	0m to <1m	1m to <2m	2m to <4m		
Benzene	0.5	0.5	0.5		
Toluene	160	220	310		
Ethylbenzene	55	NL	NL		
Xylenes	40	60	95		
Naphthalene	3	NL	NL		
Ce-C ₁₀ (F1)	45	70	2 110		
>C ₁₀ -C ₁₈ (F2)	110	240	440		
Otto St.					

1. NL: non-limiting (i.e. contaminent is not considered to pose a risk to human health).

Selected soils samples were submitted for assessment of the presence of asbestos in soil in accordance with AS4984-2004 'Polarized Light Microscopy with Dispersion Staining Method'.

For the purpose of this assessment, a criterion of "no asbestos fines or asbestos containing materials detected in soils" was adopted. For clarity, asbestos fines refers to friable forms of asbestos in soil.

ENAURHOD04835AB 4 April 2016

6.2.2. Ecological investigation and screening levels

To assess the impact on ecosystems, including site vegetation, from contamination within the upper 2m of the subsurface, the ASC NEPM presents Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for different land uses. The generic urban residential/public open space land use was considered to be applicable to the proposed development. The EILs derived for heavy metals, DDT and naphthalene in soils are summarised in Table 6.3. It is noted that EIL were adjusted using EIL Calculation Spreadsheet published by the NEPC, based the soil pH, Total Organic Carbon (TOC) and Cation Exchange Capacity (CEC) recorded within the site.

Table 6.3: Summary of EILs in Soil

Chemical	Urban residential and public open space (mg/kg)	
Arsenic	100 1	
Chromium	190 ^{2,7}	
Copper	230 ^{3,7}	
Lead	1,100 ⁴	
Nickel	280 ⁵	
Zinc	770 ^{6,7}	
DDT	180 ¹	
Naphthalene	170 ¹	

- 1. Table 1B(5) Schedule B(1), Guideline on the Investigation Levels for Soil and Groundwater (NEPC, 1999)
- 2. The Added Contaminant Limit (ACL) selected for Chromium conservatively assumes conservatively a clay content of 1%.
- 3. The ACL selected for Copper assumes an estimated average soil pH of 6.7, an average CEC of 20.5cmol_fkg and an average TOC of 9.2%.
- Table 1B(4) Schedule B(1), Guideline on the Investigation Levels for Soil and Groundwater (NEPC, 1999).
- 5. The ACL selected for Nickel assumes an average CEC of 20.5cmol/kg.
- 6. The ACL selected for Zinc assumes an estimated average soil pH of 6.7, and an average CEC of 20.5cmol./kg.
- 7. Ambient Background Concentration (ABC) was adopted for NSW assuming low traffic volume, where relevant.

The ESLs for TRH, BTEX and benzo(a)pyrene in soils from the ASC NEPM (NEPC, 2013) are summarised in Table 6.4. The adopted screening levels were selected in consideration of the shallow sandy fill recorded on site.

Table 6.4: Summary of ESLs in Soil

Chemical	ESL — Urban residential and public open space (for sandy solis) (mg/kg)	
F1 TRH C ₆ -C ₁₀ - BTEX	180	
F2 TRH C ₁₀ -C ₁₆ - Naphthalene	120	
F3 TRH >C ₁₆ -C ₃₄	300	
F4 TRH >C ₃₄ -C ₄₀	2,800	
Benzene	50	
Toluene	85	
Ethylberzene	70	
Xylenes	105	
Benzo(a)pyrene	0.7	

6.2.3. Soil – other considerations

Management limits

In accordance with Section 2.9 of Schedule B(1) of the ASC NEPM, consideration of management limits will been undertaken to assess whether the reported soil and sediment conditions have the potential to pose a potential risk to buried infrastructure, present a fire or explosion risk, or result in the formation of non-aqueous phase liquids (NAPL).

The management limits for soil are summarised in Table 6.5. The adopted screening levels were selected in consideration of the shallow sandy fill recorded on site.

Table 6.5: Summary of Management Limits

Chemical	Residential, parkland and public open space (for fine grained soils) (mg/kg)
F1: TRH Ce-Ce - BTEX	700
F2: TRH C ₁₀ -C ₁₆ - Naphthalene	1,000
F3: TRH >C ₁₆ -C ₃₄	2,500
F4: TRH >C ₃₄ -C ₄₀	10,000

Aesthetic criteria

Although no specific numeric aesthetic guideline values are provided, Schedule B1 of the ASC NEPM (NEPC, 2013) requires the consideration of aesthetic issues (as a result of contamination) arising from soils within the site. The following assessment criteria were adopted when considering soil aesthetics:

- no persistently malodourous soils, taking into consideration the natural state of the soil at the site;
- no staining or discolouration in soils, taking into consideration the natural state of the soil; and
- no large or frequently occurring anthropogenic materials present (to the extent practicable).

6.3. Groundwater assessment criteria

6.3.1. Groundwater HSLs for Vapour Intrusion

The HSLs adopted for vapour intrusion for volatile hydrocarbon constituents comprise the Limiting Criteria derived using methodology described in Appendix F7 and F6 of Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater - Part 1 (Friebel and Nadebaum, 2011).

Table 6.6 summarises the groundwater health screening levels for volatile petroleum hydrocarbons (i.e. TRH C_6 – C_{16}), BTEX and Naphthalene adopted for this assessment.

Table 6.6: Summary of groundwater HSL for vapour intrusion

Chemical Constituent	Groundwater Health Screening Levels Recreational / Open Space (HSL A) (mg/L)
Benzene	5
Toluene	NL

Chemical Constituent	Groundwater Health Screening Levels Recreational / Open Space (HSL A) (mg/L)
Ethylbenzene	NL
Total Xylene	NL
Naphthalene	NL
F1: TRH C ₈ -C ₉ - BTEX	NL
F2: TRH C ₁₀ -C ₁₈ - Naphthalene	NL

Notes:

- 1. Groundwater occurs between 4m to 8m below ground surface, and the predominant classification of residual soil is clay.
- 2. NL: non-limiting (Le. contaminant is not considered to pose a risk to human health).

6.3.2. Groundwater Investigation Levels

The ANZECC/ARMCANZ (2000) guidelines provide Trigger Values for organic and inorganic chemicals in freshwater and marine aquatic environments. The nearest surface water receptor is the freshwater Girraween/Pendle Creek which are likely to have been impacted (to varying degrees) by urban run-off. As such, the screening criteria selected for the site are the freshwater aquatic criteria for moderately disturbed ecosystems (95% level of protection).

ANZECC/ARMCANZ (2000) states that there is currently insufficient data to derive a high reliability trigger value for TPH but propose a low reliability trigger value for TPH of $7\mu g/L$. This guideline is generally considered by industry to be overly conservative and is also well below the TPH detection limit that most laboratories can achieve. Therefore the LOR is adopted as an appropriate screening trigger for TPH assessment (NSW DECC, 2007).

No registered groundwater bores have been identified within a 500m radius of the site. Given that reticulated drinking water is readily available within the site and properties surrounding the site, and the regional geology suggests the underlying bedrock would not support the abstraction of adequate volumes of water for potable water and/or irrigation, it is considered unlikely that exposure to groundwater, either through consumption and domestic uses, or through incidental exposure associated with recreational or irrigation uses would occur.

A summary of the adopted groundwater investigation levels is presented in Table 6.7.

Table 6.7: Summary of Groundwater Investigation Levels

Analyte	Laboratory Limit of Reporting	ANZECC 2000 95% Trigger Values ⁽¹⁾ (µg/L)	Adopted Groundwater Investigation Level (µg/L)
Lead	1	3.4	3.4
Benzo(a)pyrene	1	0.2 ^(LFQ)	1 ⁴²
Naphthalene	1	16	16
Anthracene	1	0.4 ^(LF)	1 ⁽²⁾
Phenanthrene	1	2 ^(LR)	2
Fluoranthene	1	1.4 ^(LR)	1.4
TPH Ce-Ce	20	-	20 ⁽³⁾
TPH C10-C14	50		50 ⁽³⁾
TPH C ₁₅ -C ₂₈	100		100 ⁽³⁾

Analyte	Laboratory Limit of Reporting	ANZECC 2000 95% Trigger Values ⁽¹⁾ (µg/L)	Adopted Groundwater Investigation Level (µg/L)
TPH C ₂₀ -C ₂₆	100	-	100 ⁽³⁾
Benzene	1	950	1
Toluene	1	180 ^(LP)	180
Ethylbenzene	1	80 ^(LR)	80
Xylene (m&p)	2	75 ^{(LR)(4)}	75
Xylene (o)	1	350 ^(LR)	350
Xylenes	3		600

- Notes:

 (1) Australian and New Zealand Environment and Conservation (2000) National Water Quality Management Strategy Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Trigger values under the 95% protection level for freehwater where biological or chemical date has not been gathered for a slightly to moderately disturbed ecceystem.

 (2) As the practical limit of reporting is above the nominated groundwater investigation level for this analyte, the laboratory limit of reporting will be used as the investigation levels (NSW DECC, 2007).

 (3) In the absence of a nominated guideline value, the laboratory LOR has been taken as the nominal trigger value for the presence of TPH compounds in groundwater as will be used as the investigation levels (NSW DECC, 2007).

 (4) Trigger level adopted for Xylene (m&p) is the low reliability trigger level for Xylene (m) as set out within ANZECC (2000).

 (LR) Low Reliability trigger values for 95% protection level, due to its potential bloaccumulation effects, recommended by ANZECC/ARMCANZ (2000). To be used as an indicative interim working level only.

7. Quality assurance / quality control

7.1. General

The following QA / QC assessment addresses data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations and the processes for assessment of data quality provided in Section 19 (Appendix C) of Schedule B(2) 'Guideline on Site Characterisation' of the ASC NEPM (NEPC, 2013).

7.2. Field QA/QC measures

The following QA/QC measures were implemented by Coffey in carrying out the investigation fieldworks described herein:

- All fieldworks were undertaken by experienced and appropriately qualified environmental scientists/engineers.
- Fleidworks were undertaken in general accordance with Coffey's SOPs which are based on guidance presented in relevant industry standards, including the relevant schedules of the ASC NEPM (2013) and AS4482 Guide to the Investigation and Sampling of Site with Potentially Conteminated Soil (Standards Australia, 2005; Parts 1 and 2).
- Field equipment including the PID, IP and water quality meter was calibrated by the equipment supplier prior to use. The calibration certificates are provided in Appendix C.
- Quality control samples were collected and analysed as part of the sampling program. This
 included blind duplicate and triplicate samples, a rinsate blank sample, trip spike and trip blank
 samples. A discussion of these results is provided in the following sections.

7.3. Field duplicate and triplicate samples

A total of 11 primary soil samples were collected from the site and submitted for analysis. One intralaboratory duplicate soil sample and one inter-laboratory duplicate soil sample were also collected and analysed. The number of inter-lab and intra-lab duplicate samples exceeded the target sampling rate of 5% of the total number of primary samples analysed.

A total of three primary groundwater samples were collected and submitted for analysis. One intralaboratory duplicate groundwater sample was also collected and analysed. The number of intra-lab duplicate samples exceeded the target sampling rate of 5% of the total number of primary samples analysed. No inter-lab duplicate groundwater samples were collected due to the poor well recharge rates which resulted in insufficient sample volume.

Primary, duplicate and triplicate sample combinations are summarised in Table 7.1.

Table 7.1: Duplicate and Triplicate Samples

Primary Sample	Duplicate Sample	Laboratory	Triplicate Sample	Laboratory
BH02/3.3-3.5	DUP1	Eurofins	DUP1A	ALS
BH02/MW02	DUP1	Eurofins		-

Relative Percentage Difference (RPD) results for the above duplicate sample pairs were calculated as shown in Tables 4 and 5 (attached). Acceptable RPD results are considered within 30% - 50%, with

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

results at the higher range expected for organic analyses. However, no RPD acceptance limit is considered to apply in the following situations where exaggerated RPD results may be expected;

- QC sample pairs where one sample reported a detectable concentration and the alternate sample reported a concentration below the laboratory LOR.
- QC sample pairs where one or more of the primary and/or duplicate samples reported contaminant concentration less than, or equal to, ten times the laboratory LOR as no RPD acceptance limit applies.

All duplicate pairs reported RPD values within the acceptable range of 30% to 50% for all samples.

7.4. Field QC samples

One trip blank sample was collected during the soil sampling programme, and one trip blank sample was collected during the groundwater sampling event to assess whether contamination may have been introduced to samples during shipping and field handling activities. Both trip blank samples reported concentrations below the laboratory LOR, indicated that a low likelihood that cross contamination has occurred as a result of sample handling activities.

Similarly, two trip spike samples were collected during fieldwork; one sample during the soil sampling programme and one sample during the groundwater sampling event. Both trip spike samples reported recoveries within the acceptable range, indicating that there was a low likelihood that the loss of volatiles had occurred during the transportation of samples from site to the laboratory.

One rinsate sample was collected during groundwater sampling to assess the effectiveness of decontamination techniques in minimising cross contamination. The rinsate sample (RB1) reported concentrations below the laboratory LOR.

7.5. Laboratory QA/QC

In accordance with standard industry practice, the project laboratories performed an internal QA / QC assessment. The assessment is typically described as a multi-level approach whereby standard laboratory control procedures are implemented, including laboratory duplicates, method blanks, matrix spikes and surrogate spikes.

Laboratory QC analytical results are summarised below:

- Laboratory analysis of samples was undertaken by NATA accredited environmental testing laboratories.
- All samples were extracted and analysed within recommended holding times.
- No target analytes were detected in any of the method blanks.
- RPDs for the laboratory duplicate samples were within the acceptable range for all samples, when the LOR was considered.
- Percentage recovery results for laboratory control samples were within the acceptable range for all samples.
- Percentage recovery results for surrogate samples were within the acceptable range for all samples.

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

- Percentage recovery results for matrix spikes were within the acceptable range for all samples.
- The laboratory internal standards, calibration blanks and mid-range calibration verifications were all within the acceptable range.

7.6. Data quality assessment

Based on an assessment of the field and laboratory QA / QC data, Coffey considers that the data obtained is representative of subsurface conditions at the sampling locations, and the results are directly usable for the purposes of this assessment.

8. Field observations and analytical results

The following provides a summary of the results of the fieldwork and laboratory analytical results collected from the investigation works undertaken within the site during February and March 2016.

8.1. Ground conditions encountered

The inferred subsurface profile encountered at the investigation locations is summarised in Table 8.1.

Table 8.1: Subsurface Profile

Unit	Depth to top of Unit (m bgs)	Thickness (m)	Description
Fill	0.0	0.5 – 0.7	Topsoll or bitumen road pavement. Sand, medium grained, brown to black with some siltstone/shale gravel and silt. Fragments of plastic, metal, and bitumen.
Residual Soil	0.5 – 0.7	1.3 – 1.4	Clay: medium to high pleaticity, firm to stiff, orange- brown with trace shale gravels.
Bedrock	2.0	Not proven	Moderately weathered Shale grading from light brown to grey.

Groundwater inflow was not encountered during drilling, with the exception of slight inflows noted at BH01 at a depth of 6mbgs. Groundwater was encountered in monitoring wells MW01 to MW03 following well installation at depths between 5.86mbgs (MW02) and 6.39mbgs (MW03). Each well was subsequently developed to remove sediment introduced during well installation and improve connectivity with the surrounding aquifer. Poor recovery was noted in each well during well development where only 0.5L to 3L was removed. No odours or visible sheens were noted during well development.

Table 8.2 presents a summary of the standing water levels recorded in monitoring wells installed on site on the 3rd March 2016.

Table 8.2: Summary of Standing Water Levels

Monitoring Well	Top of Casing ¹ (mRL)	Standing Water Level	
		mbTOC	mRL.
BH01 / MW01	29.7	5.7	23.9
BH02 / MW02	29.9	5.6	24.3
BH03 / MW03	29.6	5.4	24.2

Top of Casing Relative Levels were interpreted from the topographic survey of the college prepared by Hammond Smealie (Drawing Ref. 12599; Issue B; dated 19/01/2012)

Based on the standing water levels recorded, it is assessed that groundwater flows in a westerly direction.

8.2. Field screening and observations

Soil samples collected from the subsurface of the site were screened in the field using a PID for the presence of ionisable VOCs. Soil headspace measurements recorded from samples of fill and shallow residual soil ranged between 0.1ppm and 4.3ppm, which indicates a low potential for detectable concentrations of ionisable VOCs to be present. No odours or stained soils were noted in samples of fill and shallow residual soils.

Soil headspace measurements recorded from samples of deeper residual soil and shale bedrock collected from BH01 and BH02 at depths between 2m and 5mbgs ranged from 70ppm and 1125ppm. These readings correlated with slight hydrocarbon odours noted from soils and are considered likely to be associated with petroleum impacts from the adjoining UST and/or fuel bowser. No distinctly stained soils were noted.

Anthropogenic (man-made) material was observed within the fill material in some areas of the site and generally consisted of fragments of plastic, metal and bitumen.

As part of the field investigation works, overgrown vegetation was removed from the investigation area to improve the efficiency of identifying visible ACM. In summary no additional visible ACM were identified within the investigation area during the inspection.

Various waste materials were noted in open areas adjacent to buildings/shipping containers. It is assessed that these materials may pose aesthetic issues, if they were retained on site as part of the development.

8.3. Results

Laboratory certificates and chain of custody records are presented in Appendix E. A comparison of the soil and groundwater analytical results compared to the relevant assessment criteria is presented in Tables 1 to 3 in Appendix F. In summary, the laboratory data identified the following potential sources of contamination:

- Asbestos detected as small fibre cement fragments in shallow samples of fill collected from HA01 and HA02. It is assessed that ACM in soil derives from the demolition of historic structures that were known to be present in this part of the site and/or the weathering of building materials within the existing structures that contain asbestos.
- Lead detected in shallow fill collected from HA02 exceeds the HIL of 300mg/kg. Given the location
 of HA02, it is assessed that the lead in soil derives from paint residues containing lead, rather than
 lead-based additives derived from petroleum. On review of the dataset available to assess the
 concentration of lead in soil from paint residues, it is considered that insufficient number of
 samples was collected to derive a representative concentration using statistical methods with
 sufficient confidence.
- Volatile petroleum hydrocarbons (TRH F1) were detected in a soil sample collected from
 weathered bedrock from BH01 at 3.3-3.5mbgs at concentrations exceeding the HIL. This sample
 corresponds with hydrocarbon odours and a PID reading of 1125ppm, indicating the soil impact
 derives from petroleum impacts from the petroleum storage/distribution infrastructure located
 immediately adjacent to BH01. Volatile petroleum hydrocarbons were also detected in n a soil
 sample collected from weathered bedrock from BH02 although at concentrations below the HIL.
- Volatile petroleum hydrocarbons (TPH C6-C9), Ethylbenzene, Toluene and Xylene were also
 detected in groundwater samples collected from MW01 and MW02, with the most significant
 impact detected in MW01 situated down hydraulic gradient of the UST and bowser. Semi-volatile

Phase 2: Detailed Site Investigation Camplon College 119 Rausch Street, Old Toongabble, NSW 2146

petroleum hydrocarbons (TRH C10-C16) were also detected at levels slightly above the Limit of Detection in MW01.

- Given the presence of volatile petroleum hydrocarbons, and the absence of chemical indicators typically associated with diesel fuels, it is assessed that the UST is likely to have stored petroleum historically. Recovery of the tank dipstick and gauging of the tank indicates that the tank no longer contains petroleum, although some water is present within the UST which is likely to have derived from infiltration.
- Soil samples did not report concentrations exceed the ecological assessment criteria with the exception of TRH F3 (C16-C34) in sample HA02 (0.0-0.15m).
- Analysis of soil samples reported concentrations of petroleum hydrocarbons below the adopted Management Limits presented in Table 6.5. Similarly, the reported concentration of petroleum hydrocarbons dld not exceed the vapour inhalation HSL presented in Table 6.6.

Samples detecting asbestos or reporting chemical concentrations levels above the health and/or ecological criteria are considered further within the Conceptual Site Model.

Conceptual site model

9.1. General

A conceptual site model (CSM) is a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The following sections summarises the known potential sources of contamination, receptors and presents a discussion on the plausible linkages between sources and receptors via contaminant transport and exposure mechanisms.

9.2. Contaminant sources

The primary sources of contamination impact at the site are considered to be:

- Fragments of Bonded ACM encountered within stockpile to the north of the gardener's storage shed, and detected in samples of shallow fill collected from HA01 and HA02. ACM may also be potentially present in other areas where demolition wastes were encountered, and adjacent to facades of the existing structures.
- Lead in shallow fill collected from HA02. Based on the location of HA02, it is assessed that the source of lead derives from paint residues containing lead, rather than lead-based additives derived from petroleum.
- Volatile petroleum hydrocarbons detected in soil and groundwater samples collected from BH01/MW01 and BH02/MW02, situated adjacent to disused petroleum storage infrastructure.
- TRH F3 detected in shallow fill collected from HA02 exceeding the adopted ecological assessment criteria.

9.3. Contaminant transport and exposure mechanisms

The primary transport mechanisms for migration of contamination at the site include:

- Transport of contamination as dusts and vapours;
- Infiltration, and vertical and lateral contaminant migration;
- Surface runoff / overland flow;
- Contaminant migration along preferential flow pathways (e.g. intermittent gravel layers within the subsurface, existing or new service corridors, building foundations, etc.);
- Seepage of water into the library basement; and
- Plant uptake.

Exposure pathways to the human receptors include:

- Inhalation of vapours, dusts and fibres;
- Ingestion of soils;
- Dermal contact with soils.

9.4. Potential receptors

The following potentially sensitive areas and possible receptors have been considered during site development and future uses:

- Future student and associated commercial workers residents within the site:
- Future maintenance workers involved in subsurface excavations;
- Future construction workers involved with the redevelopment of the site;
- Surface water receptors Girraween Creek and Pendle Creek, situated approximately 720m west (down hydraulic gradient) of the site, and Toongabbie Creek situated 380m north.
- Users of land adjoining the site;
- Landscaping introduced as part of the development;
- Below ground infrastructure;

9.5. Plausible pollutant linkages

The sections present a discussion on the source – pathway – receptor relationships that have been identified in the context of the proposed redevelopment of the site:

9.5.1. Student residents & commercial workers

The proposed development will introduce student residents within the area which is currently occupied by storage sheds, gym and disused petroleum storage infrastructure. It is also assessed that this area will be accessed intermittently by site visitors and commercial workers maintaining the student accommodation, including cleaning and teaching staff.

Investigations have recorded ACM and Lead in fill materials exceeding the adopted health assessment criteria. ACM and Lead are assessed to derive from the demolition of historic structures that were known to be present in this part of the site and/or the weathering of building materials within the existing storage sheds that contain asbestos and lead-based paints. Given the suspected origins of these materials, it is assessed that surface and near surface soils surrounding the storage sheds, and stockpiled waste/soil have the potential to contain randomly distributed ACM and Lead.

Asbestos poses a potential risk via the inhalation of airborne fibres. The fragments of Bonded ACM identified in the soil stockpile to the north of the storage sheds was observed to be in relatively good condition showing no significant signs of excessive weathering. Fragments of Bonded ACM are considered to represent a low health risk (in their current state) to current site users. However, Bonded ACM that remains on site following site development has the potential to pose unacceptable risks to student residents and commercial workers using the site in the future, particularly where these materials remain within shallow soils and are susceptible further weathering/deterioration.

Samples of shallow fill collected in areas adjacent to shed facade also detected small fragments of fibre cement sheeting which are assessed to be asbestos fines (i.e. friable forms of asbestos). Friable forms of asbestos pose increased health risks due to their capacity to weather and allow fibres to become airborne.

Soils surrounding the UST at depths between 2m and 5mbgs have recorded some evidence of petroleum impact, with samples collected from BH01 at 3.3-3.5mbgs recording concentrations of volatile hydrocarbons which may pose a risk to these student residents via the vapour inhalation

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

pathway. Building foundations and deeper services introduced as part of the proposed development has the potential to create preferential vapour migration pathways.

A single storey basement car park of circa 3m deep is currently proposed approximately 15m south of the UST and associated bowser. Given that groundwater was recorded by Coffey at depths between 5.4mbgs and 5.7mbgs, groundwater seepage into the basement is not expected in significant quantities.

Groundwater has been assessed by Coffey based on the standing water levels recorded in this study to flow in a westerly direction. Given the basement is situated cross gradient from the UST and volatile hydrocarbons were recorded in all groundwater samples at concentrations below the HSL, it is assessed that vapour inhalation pathway is not complete.

9.5.2. Construction & maintenance workers

Workers carrying out excavations within the site as part of the proposed development or future maintenance event may be exposed to soil materials via the inhalation, ingestion and dermal contact pathways. Given the depth to groundwater, workers are unlikely to be exposed to groundwater on site in typical 'maintenance' works, including tree planting. However, it is considered plausible that construction workers involved with foundation piling may inadvertently be exposed to groundwater.

9.5.3. Surface water receptors

Three surface water receptors have been identified in the vicinity of the site; namely Toongabbie Creek situated 380m north of the site, the confluence of Girraween and Pendle Creeks located approximately 720m west of the site, and a pond located approximately 180m east.

Based on the westerly hydraulic gradient recorded during the investigation, it is assessed that groundwater is unlikely to impact aquatic receptors within the Toongabbie Creek to the north or pond to the east of the site. It is also assessed that that pond is of insufficient depth to intersect the groundwater table at 5.4mbgs.

Available topographic data indicates that runoff from the site will flow in a westerly and northwesterly direction. As surface water flows will be intersected by stormwater drains located with residential streets (i.e. Jago Place and Hurley Street). As such, the surface water runoff pathway is considered to be incomplete.

Groundwater samples collected from MW01, and to a lesser extent MW02, reported concentrations of petroleum hydrocarbons. In consideration of the westerly hydraulic gradient, it is assessed that the lateral migration of groundwater from the site has the potential to flow towards Girraween and Pendle Creeks. However, given that these water bodies are located approximately 720m west of the site, and flow within concrete culvert, it is assessed that the risk to aquatic receptors is low.

9.5.4. Users of land adjoining the site

Land uses surrounding the college comprise low density residential dwellings situated within Jago Place and Hurley Street. Occupants of these properties may be exposed to contamination recorded within soil on site via the inhalation of vapours/dusts/fibres deriving from the site during construction or future ground maintenance event.

Groundwater impacted with petroleum hydrocarbons has the potential to migrate offsite in a westerly direction. However, given that volatile hydrocarbons were recorded in all groundwater samples at concentrations below the HSL, and attenuation mechanisms including dispersion, dilution and biodegradation would reduce the concentration of petroleum hydrocarbons in groundwater with increased distance from the source (UST and/or bowser), it is assessed that users of land adjoining

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

the site will not be exposed to hydrocarbon vapours derived from impacted groundwater. Notwithstanding this, it is recommended that further assessment is undertaken during site redevelopment to evaluate whether groundwater impacted with petroleum hydrocarbons has the potential to migrate offsite.

9.5.5. Landscaping

Landscaping introduced as part of the development has the potential to be exposed to soil-bound contamination recorded in fill via plant uptake mechanisms. However, given that that shallow fill samples which reported TRH F3 above the adopted ecological assessment criteria would require removal to mitigate potential health risks from assessors fines, it is assessed the potential risks to landscaping is low.

9.5.6. Below ground infrastructure

Investigations have not reported concentrations of hydrocarbons exceeding the management limits adopted for this site. On this basis, it is assessed that the potential risk to below ground infrastructure is low.

10. Conclusions & recommendations

10.1. Summary of site conditions & history

The site comprises a tertiary college situated on a 4.2ha property off Rausch Street, Old Toongabble. The main college building, library and classrooms are currently established on the western portion of the site. The eastern portion of the site remains undeveloped, landscaped grounds.

Available records indicate that the site historically was used for agricultural purposes until c. 1936 when it was acquired by the Marist Brothers. Between 1936 and 1997, the site formed part of a Marist Seminary and Centre with diary and farm activities ceasing in circa 1960s. Between 1997 and 2001 the land belonged to the Diocese of Parramatta. At this time, the site was mainly used for conferences and meetings. The site was acquired by Campion College in 2001 and has subsequently operated as a tertiary college since that time.

The Investigation works focused on the northwestern portion of the site where a cluster of three small structures are present, which are currently used as a workshop, gym and store. An old fuel bowser is situated adjacent to the gym. A rectangular concrete slab adjacent to the bowser has two small caps. Removal of one of the caps revealed a graduated dipstick, which provided a strong indication that a UST remains in-situ beneath the slab. Observations made by the Coffey field engineer indicate that the base of the tank was 1.88mbgs and there was a small volume of water in the base of the tank. The water dld not contain visible sheens or odours, suggesting the UST does not contain clearly perceptible petroleum residues.

Fragments of fibre cement sheeting suspected to contain asbestos (Bonded ACM) were identified during a walkover conducted as part of a Preliminary Site Contamination Assessment (Coffey, Nov 2015). As part of the field investigation works, the investigation area was re-inspected to assess the distribution of visible asbestos containing materials (ACM). In summary no visible ACM were identified within the investigation area during the inspection.

10.2. Ground conditions encountered

Coffey completed a programme of intrusive investigation where eight boreholes were located in areas surrounding the structures, fuel bowser and UST present within the northwestern portion of the site. Three of these boreholes were positioned surrounding the UST and fuel bowser and converted to groundwater monitoring wells to check for the presence of petroleum impacts.

In summary, the investigations recorded a shallow layer of Sand fill overlying medium to high plasticity, firm to stiff Clay residual soils. Shale bedrock was encountered at depths of 2mbgs. In general groundwater ingress was not encountered during drilling. Standing water levels recorded in the vicinity of the UST ranged between 5.4m and 5.7mbgs, indicating groundwater flows in a westerly direction.

In summary, the following potential sources of contamination were identified:

FIII Materials

 Fragments of Bonded ACM encountered within stockpile to the north of the gardener's storage shed, and asbestos fines detected in samples of shallow fill collected from HA01 and HA02. It is assessed that ACM in soil derives from the demolition of historic structures that were known to be present in this part of the site and/or the weathering of building materials within the existing structures that contain asbestos. ACM may also be potentially present in other areas where demolition wastes are encountered, and adjacent to facades of the existing structures.

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

- Lead was detected in shallow fill collected from HA02 above the health-based assessment criteria. Based on the location of HA02, it is assessed that the source of lead derives from paint residues containing lead, rather than lead-based additives derived from petroleum. Lead paint residues typically concentrate within shallow fill in areas adjacent to structures.
- Petroleum hydrocarbons were detected in shallow fill collected from HA02 above the ecological assessment criteria.
- Various waste materials were noted in open areas adjacent to buildings/shipping containers. It is
 assessed that these materials may pose aesthetic issues, if they were retained on site as part of
 the development.

Petroleum Storage Infrastructure

- Volatile petroleum hydrocarbons detected in soil and groundwater samples collected from BH01/MW01 and BH02/MW02, situated adjacent to disused petroleum storage infrastructure. In consideration of the field and laboratory data, the most significant soil impact appears to exist at the base of the tank which corresponds to the soil/rock interface at 2mbgs. The depth of petroleum impacts in soil has not been fully delineated although soil headspace measurements indicating petroleum impact may extend below 5mbgs at the southwestern end of the UST.
- Petroleum hydrocarbons, Ethylbenzene, Toluene and Xylene were also detected in groundwater samples, with the most significant impact detected in MW01 situated down hydraulic gradient of the UST and bowser.
- Given the presence of volatile petroleum hydrocarbons, and the absence of chemical indicators typically associated with diesel fuels, it is assessed that the UST is likely to have stored petroleum historically. Recovery of the tank dipstick and gauging of the tank indicates that the tank contains no longer contains petroleum, although some water is present within the UST which is likely to have derived from infiltration.

10.3. Conclusions

The Conceptual Site Model developed as part of this assessment has identified plausible pollutant linkages, which require further consideration as part of the proposed site redevelopment. The following plausible pollutant linkages require further consideration:

- ACM and Lead in fill material have the potential to pose health risks to workers involved in the
 redevelopment of the site via the dermal contact, ingestion and inhalation pathways. Where fill
 materials impacted with ACM and Lead remain on site following site development, these materials
 may also pose health risks to student residents and commercial workers using the site in the
 future.
- Solls surrounding the UST and bowser have been impacted with petroleum hydrocarbons, which
 may pose a risk to the student accommodation residents via the vapour inhalation pathway. Site
 development works have the potential to create preferential vapour migration pathways, should
 the impacted soils remain on site following development.
- Groundwater impacted with petroleum hydrocarbons has been identified in an area immediately
 adjacent to the UST and fuel bowser. Although the reported concentrations are below the health
 assessment criteria adopted for this site, it is assessed that impacted groundwater has the
 potential to migrate off site in a westerly direction.
- Shallow fill impacted with petroleum hydrocarbons presents a potential risk to landscaping introduced as part of the development.

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2148

Based on the findings of the investigation, it is concluded that the site can be made suitable for the proposed development as per the requirements set out within Clause 7 of SEPP55 – Remediation of Land, subject to the implementation of a Remedial Action Plan (RAP) to mitigate the health and ecological risks associated with the pollutant linkages outlined above.

In summary, following the review of the available site history information and available investigation data. Coffey considers that investigations carried out to date are adequate for the purpose of:

- Characterising the nature of contamination (soil and groundwater) expected within the site for the type and extent of redevelopment proposed.
- Developing a Conceptual Site Model and strategy to manage the known types of contamination present within the site to make the site suitable for the proposed uses.
- Developing a framework to manage unexpected contamination encountered during the redevelopment of the site.
- Developing a framework to manage asbestos impact in fill material reasonably assumed to be encountered during the redevelopment of the site.

10.4. Recommendations

Based on the findings of this investigation, it is recommended that a RAP is developed in accordance with the guidance set out within the ASC NEPM (NEPC, 2013) and other guidance published or endorsed by the NSW EPA. It is recommended that the RAP specifically addresses the following aspects:

- Demolition of existing structures. Prior to demolition works commencing, it is recommended that
 a pre-demolition survey of these structures is undertaken to accurately identify hazardous
 building materials. Hazardous building materials should be removed prior to demolition.
- Removal of the UST, fuel bowser, and associated fuel distribution and ventilation lines. Removal
 of soil impacted with petroleum hydrocarbons to a level which mitigates the identified health
 risks.
- Removal of fill materials surrounding the structures that have been impacted with ACM, Lead and hydrocarbons
- Removal of stockpiled wastes that have the potential to pose aesthetic issues.

The RAP should also document:

- A list of permits, licenses and notifications required to implement the remediation works.
- A site management plan including site set up controls and monitoring works to assess the
 effectiveness of the plan.
- A strategy to manage unexpected finds of contamination.
- A procedure to classify soil materials excavated from site as part of the site redevelopment process.
- Remediation validation protocols and reporting requirements.

The investigation has identified groundwater that has been impacted by petroleum hydrocarbons. To inform the preparation of the RAP, it is recommended that a number of additional monitoring wells are installed hydraulically down gradient of the UST to assess the lateral extent of the impact with the view of assessing whether the contamination plume is migrating offsite at level of concern. Data from

Phase 2: Detailed Site Investigation Camplon College 119 Rausch Street, Old Toongabble, NSW 2146

this supplementary works would also be used to assess the requirement to notify the NSW EPA under the Duty to Report Guidelines (NSW EPA, 2015).

11. References

- ANZECC/ARMCANZ (2000). Australian Water Quality Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, October 2000.
- Coffey (Nov 2015); Preliminary Site Contamination Assessment, Campion College 119 Rausch Street, Old Toongabbie, NSW 2146 (Report ref. ENAURHOD04835AA-R01a, dated 26 November 2015).
- Friebel & Nadebaum (2011). Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (Technical Paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)
- Geological Survey of New South Wales (1991); Penrith Geological Map (Sheet 9030; Scale 1:100,000)
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure 1999, as amended in 2013, National Environment Protection Council.
- NSW EPA (2015); Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997
- Standards Australia (2004); AS4964; Polarized Light Microscopy with Dispersion Staining Method.
- Standards Australia (2005). AS 4482 Guide to the Sampling and Investigation of Potentially Contaminated Soil. (Parts 1 and 2)

Important information about your Coffey Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice,

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be reviewed and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

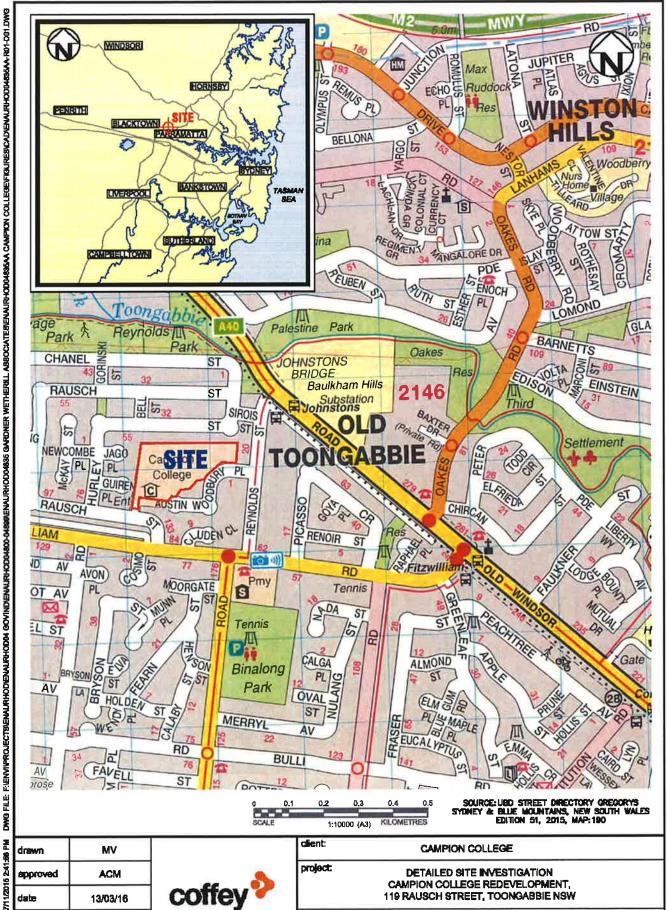
Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such

assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.


Responsibility

Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

Phase 2: Detailed Site Investigation Campion College 119 Rausch Street, Old Toongabble, NSW 2146

Figures

Coffey ENAURHOD04835AB

title:

project no:

ENAU04835AB-R01

119 RAUSCH STREET, TOONGABBIE NSW

SITE LOCATION PLAN

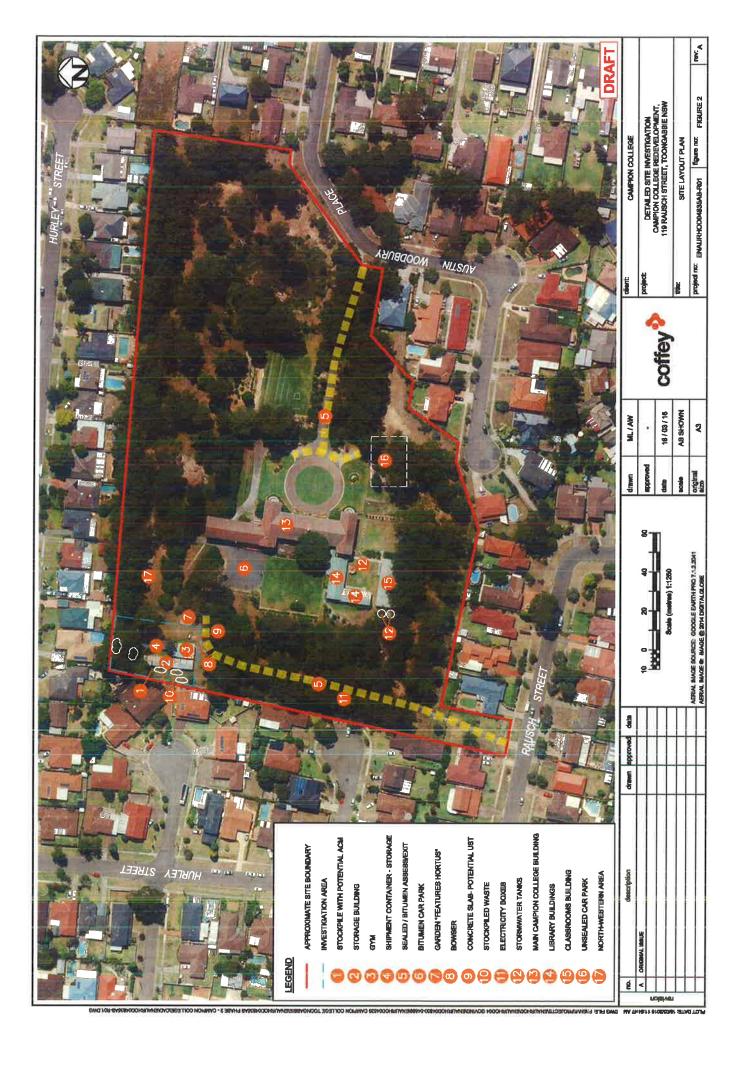
figure no:

FIGURE 1

rev:

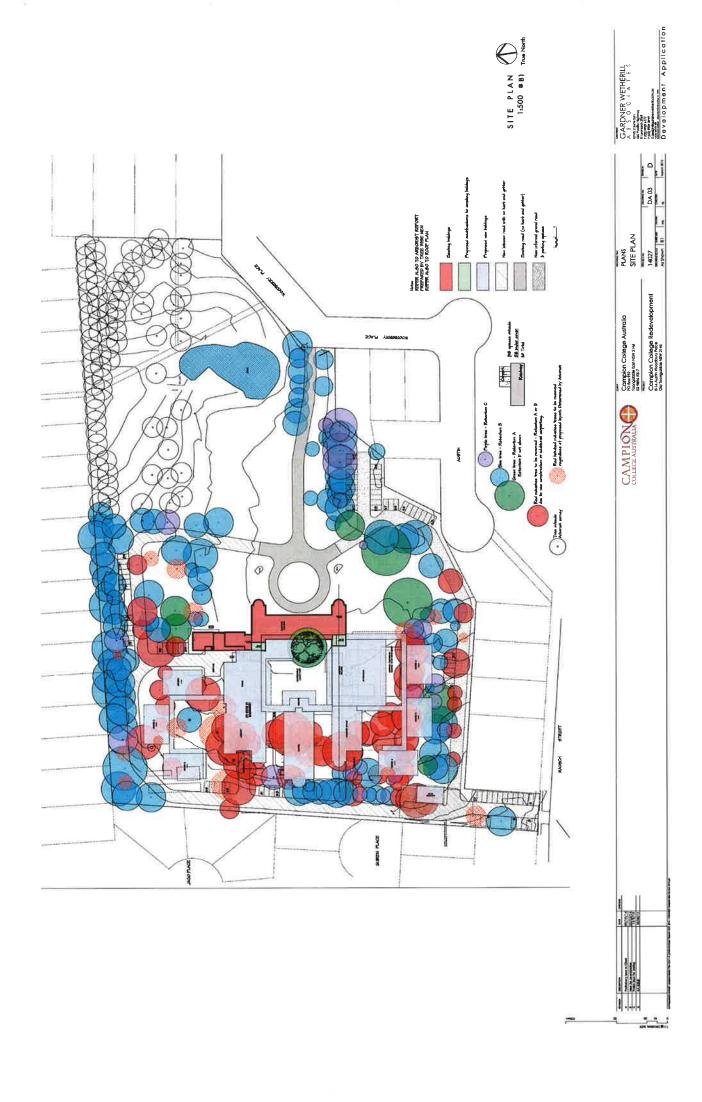
PLOT DATE: 17/11/2016 2-41:58

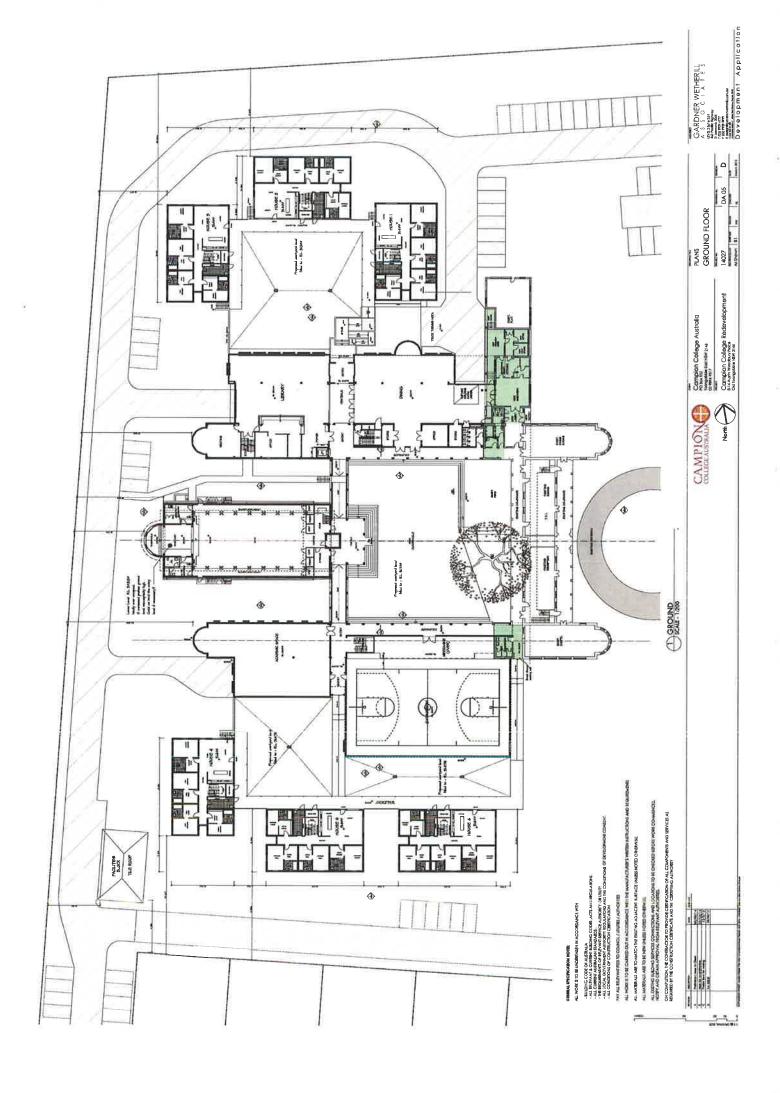
date


scale

original size

13/03/16


AS SHOWN


A4

Appendix A - Proposed Development Drawings

Appendix B - Borehole Logs

Client

Principal:

Project:

Engineering Log - Borehole Campion College

Detailed Site Investigation

Sheet Office Job No.:

Borehole No.

1 of 1 ENAURHOD04835AB

Date started:

26.2.2016

HA01

Date completed:

26.2.2016

Logged by:

PA

_	_	_	_		on: Refe	- 7.7	de la real	2				(Check	ed b	ηy:	1	ML
				mou	•		Auger				10"					L. Surl	ace:
		net		rme	tion	50 min	1	mak	artal e	Northing bearing:		_		_	d	atum:	***
method		nogaujeund 23	support		notes samples, tests, etc	RL	depth	graphic log	chamification	maderial soil type: plasticity or particle characteristics, colour, secondary and minor components.	moleture	oond/flon	consistency/ density index	k	Pa	1	etructure and additional observations
AH.					E+1.1ppm		0.5		CL	GRASS AND TOPSOIL FILL, SAND, medium grained, some slit and gravel, minor rootlets, brown, SANDY CLAY, medium grained, brown, minor grav and elitatione, increasing clay content CLAY, orange/brown, medium plasticity, some medium grained sand, trace shale and gravel.		,	MD			FILL	. No shaining, odour or ACM duel eoil.
					E+0.6ppm		1.0			Borehole HA01 terminated at 1m							
metri	those						1. <u>5</u>			notes, cangáca, toots class			decia en	d			ensistanoj/danaty Index
DT F S6 HS V AH CP HA NDC	•	P S h	olid: oliov Bit, ir ha abia and on-d	tube viern i v eten T Bit miner perta sugar	leafve	Per 2	mud cooling setretion 3 4	o reniete origing to stund weder is allown		U _m undisturbed exmple 50mm diameter and d	ancripti cn until	ed o	confical			S F S S S S S S S S S S S S S S S S S S	S very coft coft firm attif it very attif hard o friable very loom loom D medium denae dense

BOREHOLE ENALRHODOMBZSABI.GPJ COFFEY.GDT 21.3.16

Client:

Principal:

Engineering Log - Borehole Campion College

Borshole No. HA02

Sheet 1 of 1

ENAURHOD04835AB Office Job No.:

Date started:

26.2.2016

Date completed: 26.2.2016

Logged by:

PA

Project: **Detailed Site Investigation** Borehola Location: Refer floure 2 Checked by: BAH

Bor	eho -	18	Lo	atic	n: Refe	r fig	jure	2					Checks	d b	y:	MŁ.
dell	mod	el e	ınd	mou	nting: I	land /	luger			Easting: slope:	-90°				RJ	L, Surface:
	diar	_	_			(O 1781		_		Northing bearing	Į.				de	tum: -
			=	ma	ion	_	_	matk	_	betance		-				1
method	12	1	Europort	water	notes samples, issis, eio	RL	depth metres	graphic log	dassification	material soil type: planticity or particle character colour, secondary and minor compone		moleture	consistency/ density index		And meter	
Ħ					E+0.7ppm				9C	FILL, SAND AND SHALE, medium grained, minor gravel, clay and metal fragments SANDY CLAY, brown, low planticity, minor y		D	MD	/ I III		Fill. No odour, etaining or ACM
					E+1.9ppm		0. <u>5</u>		CL	CLAY, orange/brown, low planticity, minor R			F			Residuel soit
																-
		Ш			E+1.5ppm					Borehole HA02 terminated at 0.9m				Ш	Ш	
							1.0									
PT SS HS VT AH NEX	0	TA CA CAC	olid olid Bit, ir ha state and on-c	tube stem y ste T Bit mine percent	r umika r stive digging	NO ROBERTO NAME OF TAXABLE PARTY NAME OF TAX	mud cooling streets 2 3 4 2 3 5 2	no resista tenging to refusal wadar shown	svel	noise, eampies, tests U _m undisturbed semple 50mm diameter U _m undisturbed semple 63mm diameter D disfurbed semple N standard penetration test (8PT) N' SPT - semple recovered No SPT with solid come V vers share (NPs) P presumentar Bu bulk semple E environmental sureple retuel		ription unified	ciesolfice			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb frisble VL very lose L loces MD medium danse VD very dense

BOREHOLE ENAURHODOMAZSAB.GPJ COFFEY.GDT 21.3.16

Engineering Log - Borehole Client: Campion College

Borehole No. HA03

Sheet Office Job No.: 1 of 1 ENAURHOD04835AB

Date started:

26.2.2016

Principal:

Date completed: 26.2.2016

Project:

Detailed Site Investigation

Logged by:

PA

Borehole Location: Refer floure 2

Checked by

			_	n: Refe			2					Check	ed b	y.	ML.
drill mod			nou			Auger			Easting: slope:					R	.L. Surface:
rale disc					50 mn	1	1 ==		Northing bearing	Ţ.			_	ds	eturn: -
drilling	9 17	110/		ION	<u> </u>	1	met		ibetance		i —	<u> </u>		1	1
method 13		poddra	water	ncins samples, cisets, etc	RL	depth metree	graphic log	dessification	material soil type: plasticity or particle character colour, secondary and minor compon		moisture condition	consistency/ density index	k	Pa Pa	
±				E+4.3ppm		-			FitL, SAND, medium grained, brown, minor clay and rootlets, metal fragments.	r gravel,	ט	MD			Fill. No odour, staining or ACM
		- 1		E+0.4ppm		0. <u>5</u>		CL	SANDY CLAY, medium grained, grey to bro plasticity, minor gravel and elitations CLAY, orange/brown, high plasticity	nen, iow		F			Residuel soil
				E+0. @ ppm		-									
111	††	1	1						Borehole HA03 terminated at 0.9m				H	Ħ	
						1.5									
method DT FT 566 HS VT AH CCP HA NDD RC	pl. sc lx v at ca ha	Sicur Sit, 1 r han this p and a	ibe iom fi stern Bit neorou serou serou serou serou	aniva	M C PATE N		n recistant langing to shared sweeter I		notive, exceptes, tests U _m undisturbed sample 50mm diameter U _m undisturbed sample 63mm diameter D disturbed sample alandami panalmiton test (\$EPT) N° SPT - energie recovered No SPT with notid come V verne sham (\$Pa) P pressurensviar Bu butt sample E environmental sample R refusel	W we	cription curified c	ierelika			Constitution of dentity in disc. VS very soft 5 soft F firm 8 selff VSt very stiff H hard Pb frields VL sory locus L soon MD madium dense VD very dense

BOREHOLE ENAURHODOMIZSABIGRU COFFEY.GDT 21.3.16

Cilent

Principal:

Project

Engineering Log - Borehole Campion College

Detailed Site Investigation

Borehole No. HA04

Sheet 1 of 1

ENAURHOD04835AB Office Job No.:

Date started:

26.2.2016

Date completed:

26.2.2016

Logged by:

PA

VS F St VS H PO V L MD

medium o dense very dense

				n: Refe		-	<u>z</u>		Carles desar	-80°	_	Checks	d b	_	ML
iriii mode			HOUR	•		Auger			Easting: slope:						LL. Surface:
de diam di illing			yran/		iO mm	_	l mai	irlel e	Northing bearing ibstance					(H	eturro -
nomenado de la companya de la compan			řije.	notes samples, isets, etc	RL	depth	hic log	desification	material soil type: plasticity or particle characteris colour, secondary and minor componer	iticas, mias.	moleture	consistency/ density index	k	Pa Pa	
E				E+0.4ppm		_			FILL, SAND, medium greined, brown, minor (end rootlets	jravel.	ט	MD			FILL. No staining, odour or ACA
				E+1.2ppm	- 6	_		SC	SANDY CLAY, low plasticity, brown, minor graitstone, medium grained send	avel and					
+	H	+	1			0.5			Borehole HA04 terminated at 0.5m	$\neg \uparrow$			H	\dagger	
						1.0 -									

undisturbed sample 50mm diameter undisturbed sample 65mm diameter

WP WP

dry moint wat plantic fimil équid limit

disturbed sample standard penetration test (SPT)

SPT - comple recovered SPT with solid cone

vens show (kPa) pressurensiar

pressurement bulk exmple

BOREHOLE ENAURHCODOMESSAB.GRU COFFEY.GDT 21.3.16

Form GEO 5.3 leaue 3 Rev.2

push tube solid stem flight euger hollow etem flight auge V Bit, T Bit

hand auger non-desirus

M mud C cueing

water outflow

Engineering Log - Borehole

Borehole No. HA05

Sheet Office Job No.: 1 of 1 ENAURHOD04835AB

Campion College

Date started:

26.2.2016

Principal: **Project**:

Date completed:

26.2.2016

Detailed Site Investigation

Logged by:

PA

Borehole Location: Refer figure 2

ML Checked by:

drill model and mounting: Hand Auger slope: R.L. Surface: Northing hole diameter: 50 mm bearing: deturc drilling information meterial substance pocket penetro-meter damification symbol consistency/ density index n otes graphic log structure and additional observations amples, tests, eto penet support soil type: plasticity or particle characteristics, colour, secondary and minor components. RL 3888 123 FILL, SILTY SAND, medium grained, brown, minor gravel, day and rootiets ILL. No odour, staining or ACM E+0.8ppm Sandy CLAY, low planticity gray to brown, alightly moist, with some medium grained send Becoming arrange brown with some allistone 0.5 CLAY, orange/brown, high plasticity St Residual soli E+0.3ppm E+0.200m Borehole HA05 terminated at 0.9m 1.0 1.5 mples, tests undisturbed sample 50mm diameter and description based on unified describerion distube M mud N nii undisturbed sample 63mm diamete PT SS HS VT AH CP HA NEED RC C casino push tuba. S F & VSt H PO L LID disturbed sample standard penetration test (SPT) solid stem flight auger Form GEO 5.3 leave 3 Rev.2 Am hollow elem flight suge SPT - sumple recove SPT with solid cone V Bit, T Bit very a dy air hammer vers sheer (kPe) 10/1/96 water k on data shown hand allow very lo rock carer - water inflow D weier outliow

BOREHOLE ENALPRHODOMIZZABI.OPJ COFFEY.GDT 21.3.16

Engineering Log - Monitoring Well

Campion College

Client Principal:

Project

Detailed Site investigation

Borehole No. BH01/MW01

Office Job No.:

ENAURHOD04835AB 26.2.2016 Date started:

Date completed: 26.2.2016

Logged by:

PA

Bore	hol	e L	cati	on: Ref e	r figu	re 2				CI	necked	by:	ML
drill n	node	d & r	nguni	ing:Geoproi	re Trace		Epo	ding:	elope:	-90°		R1	. Surface:
hole				50			-	thing:	bearing:			dat	um: -
QINI	iing	icin)rm	tion		r	ma		ubstance		_		
method	Dispusad 12:	tanada i	water	notes samples, tests, etc	wed datale	depth RL metre	graphic log	dessification	meterial soil type: plasticity or particle ch colour, eccondary and minor co	aracterística, omponenta.	molature condition	consistency/ density indes	structure and additional observations
3	П	П	П	E+0.1ppm	000				GRAVEL AND ROADBASE		D	MD	Potential bitumen perioles in sample at 0.05 - 0.2m, No odour -
				E+0.1ppm	4 4			CL	FILL, SAND, black, medium grained, and pleatic fragments. Increasing gravels and elitations CLAY, some sand, orange/brown, me trace shale and gravel.	U 21/100€/20000144			Fill. No adour, staining or ACM. Residual soll.
E				E+0.3ppm		-			Becoming grey			F	<u> </u>
	Н	Ш		E+70.9ppm	8		<i>W//</i>	\vdash	Increasing shale content				
8				C-10.appiii		-			SHALE, moderately weathered, light send, some sill content.	brown, some			Bedrock
				E+171ppm		3							Slight HC odour
				Е+1125ррп		4			Clary learnes				Slight HC adour
				E+21 6 ppm		<u>5</u>			Softer				-
				E+234ppm		<u>6</u>							
Н	Ш	Ш				7							
						0. -			Borehole termineted at 7m				2
SE S		holi V Bi cirli cab hon non	i tube i atam ov ete t, T Bi arme e perc i auge	ir Xissive X X X X X X X X X X X X X X X X X X X	→ or	ing Nr		notes, s Use D N N° Nc P Be R R E PID W8 PZ ALT	areples, tests undisturbed sample 50mm diameter disturbed sample standard pensivation test (SPT) SPT - emple recovered SPT with solid come pressure mater bulk sample refusal environmental sample PED mesurement water sample plesoneter air iff test	classification syntax sall description based on unified da system moisture D dry M moist W west Wp please limit WL liquid limit			consistency/density index VS very eaft S suft F firm St eatif VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

PIEZOMETER ENAURHODOMOZBAB.GPJ COFFEY.GDT 21.3.18

Principal:

Project:

Engineering Log - Monitoring Well Client: Campion College

Detailed Site Investigation

Borehole No. BH02/MW02

Sheet 1 of 1

ENAURHOD04835AB Office Job No.:

Date started:

26.2.2016

Data completed: 26.2.2016

Logged by:

PA

гијо					Heur .						_	ogged	ny.	CA.
	_	_		on: Refe								hecked	i by:	ML
			punt	ng:Geopro	De Traci				ting:	dops:	-90°		RL	. Surface:
hole di				50			_	_	thing:	bearin	ţ.		dat	un:
cirillia	ngı	mo	me	uon	_	_		Int		substance				
method	23	aupport	weder	notes samples, tests, etc	well datale	RL	depth	graphic log	dessification	meterial soil type: plasticity or particle colour, secondary and mino	characteristics, or components.	mainture	consintency/	structure and additional observations
至日	T	П		E+0.7ppm	4 4			3113		GRASS AND TOPSOIL		D	MD	Fill. No odour, staining or ACM
PT				E+0.4ppm E+0.4ppm	4		1		CL	FILL, SAND, medium grained, an minor rooflets, brown,. CLAY, crangettrown, medium pl gravel.			F	Residual soli
88				E+0.appm			2			Becoming grey and increasing sh SHALE, moderately weethered, li	els content ght brown to grey			Bedrock Slight HC adour
				E+ 635 ppm			3			Clay lense				Slight HC odour
				E+53.5ppm			4 1 1 5			4.5m: Becoming darker brown				Slight HC odour
				E+5ppm			6							:
							- 7 8			Borehole terminated at 7m				
emithed DT PT 88 HB VT AH CP HA NDD RC	e de la companya de l	ollow Bit, ir hu able and :	ube den f eten T Bit mme percu nager adru	ant/o	weder w 16	nation 4 no name nation 1/1/96 no nation info	N ril rosisienos ging to stal rester leve frown		Traine, and Line No.	imples, teets undisturbed earryte 80mm disensier disturbed aample standard penetration teet (SPT) SPT - aarryte necovared SPT with solid come pressure mater butk earryte refusel environmental sample PID measurement wetter aarryte pleconstar ar it taat	classification synt mail description based on unified da system molature D dry M moist W wet Wp plastic limit W, Equid limit			consistency/density instance VS very soft S very soft S very S very S very S very S very VS very stiff H hard Fb finble VL very loose L loose MD medium dense D dense VD very dense

PIEZOWETER ENAURHODOMRZEABLOPJ COFFEY.GOT 21.3.18

Principal:

Engineering Log - Monitoring Well Campion College

Borehole No. BH03/MW03

Sheet 1 of 1

Office Job No.: ENAURHOD04835AB

26.2.2016 Date started:

Data completed: 26.2.2016

Logged by: PA

Detailed Site Investigation Project:

					: Refe	_		2					hecked		ML.
				ıntin	g:Geoprob	e Trace	•			iting:	elope:	- 9 0°			. Surface:
drli	-			notile the	50			_		thing:	ubstance bearing	¥	_	dat	
potte	12		Ę	weight	notes samples, tests, etc	well datale	RL	depth	graphic log	demaification	material soil type; pleaticity or particle colour, secondary and mino	characteristics,	moisture	consistency/ density index	structure sad additional observations
3	ŤΤ	Ť	+	7		414			13113	\vdash	GRASS AND TOPSOIL		D	MD	FILL. No staining, odour or ACM
				- 1	E+3.1ppm E+1.1ppm	A 4 8		-	▓	-	FILL, SAND, medium grained, me allt, gravel and plantic fregments.			F	Residual coll
E				Į	E+1.6ppm	8 8		1		CL	CLAY, orange/brown, medium ple gravels.	socily, trace andia		ŗ	Notificial action
۵								-			Becoming grey				
8					E+1.7ppm	Ē		-			SHALE, moderately weathered lig	ht brown to grey			Bedrock
				þ	+1.900m			3			Clay lense				,
				1	E+2.3ppm			4			Becoming darker brown				
				ti	E+2.3ppm)			5 6 7							
\dashv	#	$\dagger\dagger$	+	+			+				Borehole terminated at 7m				
11日 日本 8年 5 本 7 年 5 日 6 日 6 日 6 日 6 日 6 日 6 日 6 日 6 日 6 日			illow Blt, T Hearn ble p nd al	nder nder ner gen gen gen gen gen	ight auger flight auger leive leive digging	pend 1 2	eing	N rail		notes, a Us N N° Nc P Be R E PID	umples, tents undisturbed sample 50mm disureter disturbed aample standard penetration test (SPT) SPT - earrpie recovered SPT with solid core pressure mater but semple refusal environmental sample PID measurement weter semple	classification sym soli description based on unified d system molature D dry M moist W west Wp plastic limit W, Equid limit			consistency/density index. VS very soft S soft F firm St stiff VSt very stiff H seried Fb thistie VL very loose L loose MD medium dense

PLEZOMETER ENAURHODOMIZISABLIGPJ COFFEY.GDT 21.3.18

Appendix C - Equipment Calibration Records

RENTALS

Equipment Report - MINIRAE 2000 PID

This Gas Meter has been performance checked and calibrated as follows:

Lamp	Compound	Concentration	Zero	Span	Traceability Lot #	Pass?
10.6 ev	Isobutylene	(00 ppm	0.0 ppm	97,9ppm	1808481 C2	
Alarm Limits		E	Bump Test			
High	100 ppm		Date	Target Gas	Reading	Pass?
Low	SV ppm		25/02/2016	(OO ppm	97.8 ppm	
Battery Status No minutes test Spare battery st Scientifical Safety Tag No: Valid to: Date: 2.5	complete tatus (Min 5.5 volts Tag attached (AS/N	VZS 3760)		Performan Data clear Filters che		o, sensor)
Signed:	Sil	hv-				
Please check that minimum \$30 clear billed for at the full	ning / service / rep	air charge may be	hat all items are o applied to any un	cleaned and deco	ontaminated before re d items. Items not ret	turn. A urned will be
Sent R	Lan Pro Inle Spa Che Insl Spa Insl Cal Dat	in iRAE 2000 PID / On piece eV, Complete eV,	npound Set to: (2) er boot o PID) s) Qty 500mA hind foam on the I hind foam on the I Compartment wi ter Guide Lamina tubing (optional)	id of case " lid of case " th batteries ted RE 6 71		- _j e
TFS Ref	erence CSA	04210 Re	eturn Date:	1 1		
Customer Ref			eturn Time:		=	
Equipm	nent ID PIDI	YINSIC	ondition on return	:		
Equipment Ser	rial No. 1100	06051				

	"We do more that	n give you great equipment W		
Phone: (Fre	e Call) 1300 735 295	Fax: (Free Call) 1800 675 1	123 Em	ail: RentalsAU@Thermofisher.com
Melbourne Branch 5 Caribbean Drive. Scoresby 3179	Sydney Branch Level 1, 4 Talwera Road, North Ryde 2113	Adelalde Branch 27 Bestah Road, Norwood South Australia 5087	Brisbane Branch Unit 25 Ross St Newstead 4006	Peth Branch 121 Belingaria Ave Metaga WA 6090
Issue 7	The second secon	Nov 12		G0553

RENTALS

Equipment Report - Solinst Model 122 Interface Meter

This Meter has been performance checked / calibrated* as follows: □No Cleaned/Tested **⊮**Probe Tape/Reel Performance Test & Battery Voltage Check (v) 8.0v minimum Checked by: MAD Date: Signed: Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost. Returned ltem Received Operations check OK Plastic Box / Bag O Spare 9V Battery Qty Probe Cleaning Brush Γ \Box Decon F Instruction leaflet E Tape Guide \Box Processors Signature/ Initials Condition on return Quote Reference **Customer Ref** Equipment ID

MANA PARTY PRODUCTIONS		• HOMEOGreene established	m.
"We do more than	Fax: (Free Call) 1800 675		ORS nail: RentalsAU@Thermofisher.com
Sydney Branch Level 1, 4 Tallavers Road, North Hyde 2113	Adalaide Stanch 27 Berlah Rond, Norwood Seuth Auskal's 5067	Britsbane Branch Unit 2/5 Bore St Newstead 4008	Parth Branch 121 Beringama Ave Malaga WA 6090

Caribbean Drive. Rossiby 3179 ISSUE 5

Equipment serial no.

Return Date Return Time

Phone: (Free Call) 130

2306569

Sep 11

G0561

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

Sensor	Concentration	Span	1	Span :	2	Traceability Lot #	Pass?
рН	pH 7.00 / pH 4.00	7 00	рН	4.00	pН	1	
Conductivity	12.88mS/cm	0 00	mS/cm	12.88	mS/cm		₽
TDS	36 ppk	MA	ppk	MIA	ppk	Check any	/ 🛮
Dissolved Oxygen	Sodium Sulphite / Air	in Sodium	ppm Sulphite	Saturation	ppm on in Air		2
Check only		1					
Redox (ORP) *	Electrode operability test	240m\ +/- 10°		229	mV		Ø
Tag N Valid	tus 7.8 afety Tag attached (A lo: 000396 lo: 12016			☐ Temp ☐ Electr	erature _ odes Cle	22 S°C eaned and checked	
اigned: کے)zal		_				
Please check to ninimum \$30 c	hat the following item cleaning / service / re full replacement cos	pair charge ma	and that ay be app	all items are collied to any und	eleaned a clean or	and decontaminated bet damaged items. Items	fore return not return
Please check to ninimum \$30 co silled for at the Sent	cleaning / service / re full replacement cos Returned Item 90FLM PH sen Conduc Dissolv Redox Power: Instruct Quick C Syringe Carry C Check	pair charge mat. V Unit. Ops chest wetting tivity/TDS/Tened oxygen YSI (ORP) sensor to supply 240V to ion Manual auide	eck/Batte g cap, 5m nperature 5739 ser with wetti o 12V DC	ory status: K=10 sensor, nsor with wettir ing cap, 5m 200mA	5m ng cap, 5	damaged items. Items	fore return
Please check to ninimum \$30 co silled for at the Sent	cleaning / service / re full replacement cos Returned Item 90FLM PH sen Conduc Dissolv Redox Power Instruct Quick C Syringe Carry C	pair charge mat. V Unit. Ops chosor with wetting tivity/TDS/Tened oxygen YSI (ORP) sensor to supply 240V to ion Manual Guide	eck/Batte g cap, 5m nperature 5739 ser with wetti o 12V DC	ory status: K=10 sensor, nsor with wettir ing cap, 5m 200mA	5m ng cap, 5	damaged items. Items	fore return
Please check to ininimum \$30 co silled for at the Sent Solution of the Sent Solution of the Signed:	cleaning / service / refull replacement cos Returned Item 90FLM pH sen Conduct Dissolv Redox Power sen Guick Cosyringe Carry Cocheck	pair charge mat. V Unit. Ops chosor with wetting tivity/TDS/Tened oxygen YSI (ORP) sensor to supply 240V to ion Manual Guide with storage stase to confirm elections.	eck/Batte g cap, 5m nperature 5739 ser with wetti 12V DC	ory status: K=10 sensor, nsor with wettir ing cap, 5m 200mA	5m ng cap, 5	damaged items. Items	fore return
Please check to inimum \$30 co illed for at the Sent Signed:	Reference CSC	pair charge mat. V Unit. Ops chosor with wetting tivity/TDS/Tened oxygen YSI (ORP) sensor to supply 240V to ion Manual Guide	eck/Batte g cap, 5m nperature 5739 ser with wetti 0 12V DC solution fo	ery status: 2 EK=10 sensor, nsor with wettir ing cap, 5m 200mA or pH and ORF	5m ng cap, 5	damaged items. Items	fore return
Please check to ininimum \$30 colled for at the Sent Signed:	Reference CSC	pair charge mat. V Unit. Ops chosor with wetting tivity/TDS/Tened oxygen YSI (ORP) sensor supply 240V to ion Manual Guide owith storage stase to confirm elections.	eck/Batte g cap, 5m nperature 5739 ser with wetti 12V DC solution for trical safe	ery status: 8 ery status: 8 ery status: 8 K=10 sensor, nsor with wettir ing cap, 5m 200mA or pH and ORF ery (tag must b	5m ng cap, 5	damaged items. Items	fore return

	"We do more than	give you great equipment We	e give you great	solutions!"
Phone: (Free C	(all) 1300 735 295	Fax: (Free Call) 1800 675 1	23	Email: RentalsAU@Thermofisher.com
Arlbourne Branch Caribbean Drive,	Sydney Branch Level 1, 4 Tallevers Road	Adelaide granch 27 Beulah Roud, Norwood, South Austral & 5027	Brisbane Branch Unit 2/5 Ross St Navistand 4008	Perth Branch 121 Beringerra Ave Malaga WA 6220

45 20

Groundwater Sampling Form (A) - General

PAGE ___ OF_____

FIELD PERSONNEL. PROJECT MANAGER:	NNEL	5	•									
PROJECT MAN		3	ω.		ì			DATE	الم	2 6		I
	AGER:	五	ede						8	c		
WELL ID: 8 HOZ	8 462 MWD ZMETER ID& TYPE:	TER ID& TYPE:	Sol	122-94	et-	TOTAL WE	TOTAL WELL DEPTH:	5.9	SCI	SCREEN INTERVAL:	Ü	2,65
EQUIPMENT USED:	BAILER X WATERRA	WATERRA	OTHER		1	WELL	WELL DIAMETER:	North	D_	WELL STICK-UP:	2	0
WELL GAUGING AND PURGE VOLUME CALCULATIONS (TOTAL WELL DEPTH) – (DEPTH TO WATER) = (WATER COLUMN) 6.5 m – 5.58 = 0.92	RGE VOLUME CALC	VATER COLUMN)	l	Use water column calculation together with the procedures in 'SOP- Groundwater Sampling - Bailers' to determine the correct volume to be purged from the well (enter this value in the field to the right)	olumn calculation together with the in 'SOP- Groundwater Sampling. The cornect volume to be purged its value in the field to the right)	he - Bailers' Ifrom the	LITRES PE	LITRES PER 1 WELL VOLUME	LUME	WELL HEADSPACE PID READING PID READING PPM:	SPACE PID	READING
ORP REFERENCE ELECTRODE:	CTRODEs (circle)	뿘	/ Calomel Saturated KCI /	/ Ag/AgCI 1M KCI	-	Ag/AgCI 4M KCI / Ag	Ag/AgCl Saturated KCl	RC!				
TIME OF PUMP VOI	VOLUME WATER (n)	DISSOLVED OXYGEN (mg/l)		ELECTRICAL CONDUCTIVITY (mS or µS/cm)	(stinu Hq)	(3)	REDOX POTENTIAL (mV)	TEM	TEMPERATURE (°C)	Pady CCLARITY - Uck pady Judy Pady Pady Pady Pady Pady Pady Pady Pa	ay S nudy fibid	COMMENTS CODOUR, COLOUR, SEDIMENTS, PS
		READING CHA	CHANGE READING	NG CHANGE	READING	CHANGE	READING CHA	CHANGE READING	G CHANGE	PIO BIIS	clo	COLLECTED, etc
13.56 havang	5.58			35		713 31.1						No cdoor sheen
100	-544-31	3.2	9.60	0.00	4.0		96	ત્ર	80	 X	¥	No odour/Sheen
												clean to cloudy
M-32 0	0-3816-4						-					
	project of	1- 6	paule	to	ملاماه	73	A . SA	3	weste	8		
	from P.	70 A	wate									
	-											
			-1-				+					
STABILISATION CRITERIA (3 readings within following ranges)	RIA nges)	± 10%		43%	± 0.1 unit	nit .	± 10mV		± 0.2°C			
DUPLICATE COLLECTED.			DUPLICATE ID;	<u>a</u>	To states	ELT SCHIPTORE CO TO TRIPLICATE CO	Semyle TRIPLICATE COLLECTED 3- Wastals A	TE: Jedone	 >. 3/	NLECTED: Y N N TRIPLICATE ID:		

Coffey Environments - Groundwater Sampling Form (A) – General Issue Date: 17/10/2013 UNCONTROLLED WHEN PRINTED – SEE ELECTRONIC COPY FOR LATEST VERSION

coffey Groundwater 8

Groundwater Sampling Form (A) - General

PAGE (OF

00/00/ Sheen ODOUR, COLOUR, SEDIMENTS, PSH COLLECTED, etc The state of the s No volow Slace COMMENTS Nooker Sheen No See WELL HEADSPACE PID READING 0/2 2 Z Turbld Very X CLARITY - tick one PID READING SCREEN INTERVAL: WELL STICK-UP: 6RO483SAB Сјопду X PPM: Slightly Cloudy † Clear CHANGE TEMPERATURE (°C) ± 0.20€ LITRES PER 1 WELL VOLUME 2244 P12 23.2 READING SOMM PROJECT NUMBER: DATE 6.5 ORP REFERENCE ELECTRODE: (circle) SHE / Calomel Saturated KCl / Ag/AgCl 1M KCl / Ag/AgCl 4M KCl / Ag/AgCl Saturated KCl CHANGE. REDOX POTENTIAL (mV) WELL DIAMETER: ± 10mV TOTAL WELL DEPTH: はとうの READING 5 9 4 Use water column calculation together with the procedures in SOP. Consulvater Sampling. Bailers to determine the correct volume to be purged from the well (enter this value in the field to the right) CHANGE ± 0.1 unit pH (pH units) READING <u>د</u>. S. Si CONSTITUTE PAR (MS or USION) 1340 15/5m 1310 Levert 1380 CHANGE METER ID& TYPE: 50L122-44 + 3% READING \$ Š **か** OTHER Ю CHANGE M Locke Locke DISSOLVED OXYGEN (mg/l) amp ion ₹ 10% (TCTAL WELL DEPTH) — (DEPTH TO WATER) = (WATER COLUMN) 7.2 READING 27.0 EQUIPMENT USED: BAILER V WATERRA WELL GAUGING AND PURGE VOLUME CALCULATIONS 1.93 21.7 2 こうかなから II DEPTH TO WATER (m) 27.9 SIS <u>ه</u> ب 5.75 5.55UZ-C WELL ID: BHO! MWO! PROJECT MANAGER: 18.0 PROJECT NAME: FIELD PERSONNEL: <u>ح</u> VOLUME (L) 196 STABILISATION CRITERIA (3 readings within following ranges) そなっ CYCLE/ PUMP RATE (ml/min) 1-1-10 PCA housen \ \ \ TIME OF DAY 55 + S

Coffey Environments - Groundwater Sampling Form (A) – General Issue Date: 17/10/2013

MAS THIS FORM BEEN COMPLETED IN FULL? Y

Unfiltered samples must not be put into a preserved container (i.e.' 'metals' bottle)

Ž Ž

WERE METALS FIELD FILTERED?

DUPLICATE COLLECTED:

TRIPLICATE ID:

Z

TRIPLICATE COLLECTED:

Y N N DUPLICATE ID:

ISSUE DATE: 17/10/2013
UNCONTROLLED WHEN PRINTED - SEE ELECTRONIC COPY FOR LATEST VERSION

380

Groundwater Sampling Form (A) - General

PAGE OF

ODOUR, COLOUR, SEDIMENTS, PSH COLLECTED, etc o door Ishack COMMENTS 1 Ò WELL HEADSPACE PID READING 1 Į 2 1 HAS THIS FORM BEEN COMPLETED IN FULL? Y N 7.5 9 X Turbld Very TRIPLICATE ID: かれら4838年5 CLARITY - fick one PID READING SCREEN INTERVAL: WELL STICK-UP: Clondy PPM: Slightly 2 Z Z Z Clear phase worke CHANGE TEMPERATURE (°C) ± 0.2°C LITRES PER 1 WELL VOLUME Sont 6.9 READING 7-17 DATE 7 PROJECT NUMBER: N. TRIPLICATE COLLECTED: ORP REFERENCE ELECTRODE: (circle) SHE / Calomel Saturated KCI / Ag/AgCI 1M KCI / Ag/AgCI 4M KCI / Ag/AgCI Saturated KCI CHANGE. from REDOX POTENTIAL (m/) TOTAL WELL DEPTH: WELL DIAMETER: ± 10mV READING 6 172 Unfiltered samples must not be put into a preserved container (i.e. 'metals' bottle) 5 Ť aberted Use water column calculation together with the procedures in 'SOP-. Groundwater Sampling - Baters' to determine the correct volume to be purged from the well (enter this value in the field to the right) CHANGE ± 0.1 unit pH (pH units) 4 6.39 READING 28.9 CHADCETIVITY (mS or us/cm) 4 Ster 14 P 470 1470. CHANGE. Sample ₹3% WELL ID: ILIMOS BITOMETER ID& TYPE; SOL 122 f 4.4 READING 36 6 EQUIPMENT USED: BAILER X WATERRA OTHER DUPLICATE ID: T CHANGE E, DISSOLVED OXYGEN (mg/l) %0¢∓ amp (TOTAL WELL DEPTH) - (DEPTH TO WATER) = (WATER COLUMN) 1.63 アメア Z _ WELL GAUGING AND PURGE VOLUME CALCULATIONS 00 READING N Z くさ ر ک Ś 4 3 u 50.9 4 DEPTH TO WATER (m) 85 9 759-0 5.37 5.37 WERE METALS FIELD FILTERED? 0.5i46 1-321 FIELD PERSONNEL: PROJECT MANAGER: VOLUME (L) DUPLICATE COLLECTED: STABILISATION CRITERIA (3 readings within following ranges) E coffev 💝 ځ CYCLE/ PUMP RATE (ml/min) 8 8 Bro 85.00 14.00 4.51 TIME OF DAY ف 14-18

Issue Date: 17/10/2013 UNCONTROLLED WHEN PRINTED – SEE ELECTRONIC COPY FOR LATEST VERSION Coffey Environments - Groundwater Sampling Form (A) – General

3

Appendix E - Laboratory Test Certificates & Chain of Custody Documentation

coffey Chain of Custody

Laboratory Quotation / Order No:

No: 07705

JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 240216 Sample Condition on Receipt Time: JOD NO: ERO48354851001 | 013 Date: Sighal 1KH CP-1 1860 931 70I 737 701 Ashactac Consignment Note No. Consigning Officer Date Dispatched: Courier Service. PAHARH RIEX SM STIG Received by: Start of Project Manager: M. COCKL (report results to) Sampled by: P. ALMA 25 02 16 26 2 16 Date Sampled 2.0-50.0 2-4-2-5 0.9-8.5/ 0-9-9-5 5.3-5.5 0-1-60 10.4-0.5 1.8-2.0 0.05-0-2 8401/3.5-3.7 2.3 - 3.5 2-2-2-4 TB 160225-16 9-0-5-01 Time TS 160225-17 Sample No. Date: 729 2 DUP 1A 8HOI) BHO! BHOI 8 HoZ 8 HOL SP BHOL BHOL BHDI 8HOI/ BH02 8H02 6 HOZ Container Type and Preservative Symple RELIGITY PHIAR EUROFINS MAT IAR 5 LANG COVE Soil Sample Matrix ALS M. LOCKE * SEND SMARLE Special Laboratory Instructions DUPIA TO Comments Relinquished by: (Address & Phone No.) Attention:

Copies: WHITE: Sign on release. YELLOW: If dispatched to interstate Lab. Lab to sign on receipt and fax back to Coffey. BLUE: To be returned with results

Detection Limits

Tumaround Required: (Handlord

46.	
_	
0.0	
Diame.	
COMPANY	
711	
$-\omega$	
Salaman .	
Salara .	
\sim	
()	
_	

Chain of Custody

Laboratory Quotation / Order No:

90220 :oN

᠘

Ğ

Sheet

JOD NO. ERO4835AB

REFERENCED ON ALL SUBSEQUENT PAGES Sample Condition on Receipt Time: X318 Date: TRH CL. 201 HJ 737 701 Achestos Consignment Note No. Consigning Officer وداور Date Dispatched: Courier Service: PA BUNS SM BUNS Metals WAHP & BIEX SHALL SHA9 Project Manager: (report results to) M : LOCK 2 16 Received by: Delgma2 statu Sempled by: P. ALMA 26 8403/8.0-3 | 6403 1-9-5-5 6403 1-9-20 8403 0-8-0-9 0-1-6-0 HAO 2 10-0-0-15 HADZ 0.8-0.9 51.0-500 6tt03/40-4-2 BH03/6.05-0-2 HA02 0-3-0-5 5-0- 4-0 Time 8402/07-0.8 BHOZ / 4.5-48 BHOS 10.5-0-6 HA03 10 -0-15 Tumaround Required: Sample No. 29/12 HAO! TAO 100 S. Fromple RECEIPT EUROFINS MLT Container Type and Preservative JAR しる Sample Matrix 4 Special Laboratory Instructions Comments Detection Lunits Relinquished by Dispatch to: (Address & Phone No.) Attention

Copiest: WHITE: Sign on release YELLOW; if departched to interstate Lab, Lab to agn on recent and tax back to Coffey BLUE: To be returned with results.

H550/6:00

coffey *

Chain of Custody

No: 07707

AEFERENCED ON ALL SUBSEQUENT PAGES Sample Condition on Receipt Time 2802h Job No: Effet 35AB Sheet S & 3 Date: 20V 232 Hg 10C Consignment Note No: Consigning Officer. Date Dispatched: Courier Service FB 3TW an and Received by: Si Capt 9 k Project Manager: (report results to) 26/2/ Date Sampled Sampled by. ALMA Laboratory Quotation / Order No: HA04 10.0-0.15 HA05 / 0 - 5 - 0-6 HACA 0.3-0.4 HAOS 10-8-0-9 HA05/0-0-0-15 P.0-8-01 Time: HA03/0-5-0-6 Turnaround Required: Sample No. Date: 27 2 HAO3 SAMPLE RELEIPT. EURDFINS MLT Container Type and Preservative JAR 2016 xinteM stqms2 Special Laboratory Instructions: Comments Detection Limits: Relinquished by: Dispatch to: (Address & Phone No.) Attention

Copies: WHITE: Sign on refease YELLOW: If dispatched to mieratate Lab. Lab to sign on receipt and flux back to Coffey BLUE: To be returned with results.

90-0/02219

Sean 1/3 11:36

From: Nibha Vaidya (mailto:NibhaVaidya@eurofins.com)

Sent: Tuesday, 1 March 2016 11:36 AM

To: EnviroSampleNSW

Subject: FW: Eurofins | mgt Sample Receipt Advice - Report 490931 : Site ER04835AB

Please add the below to 490931.

From: Matthew Locke [mailto:Matthew.Locke@coffey.com]

Sent: Tuesday, 1 March 2016 11:27 AM To: enquiriessyd@eurofins.com.au Cc: NibhaVaidya@eurofins.com.au

Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 490931 : Site ER04835AB

Dear Eurofins,

Can I please request the following additional analysis the following samples in this batch:

Analyte Sample ID

Lead DUP1

DUP1A

BH01/0.4-0.5

BH01/3.5-3.7

BH02/0.5-0.6

BH02/3.3-3.7

BH03/0.05-0.2

BH03/1.9-2.0

Please undertake this analysis on a standard turnaround basis.

Regards,

Matt

ABN - 60 005 065 621

e mail · ErwiroSalea@eurofina.com.au

with : www.eurofine.com.eu

Melbourne 3-5 Kingston Town Close Dekleigh Via 3186 Phone : +61 3 8564 5000 NATA # 1261 8 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2068 Phone : +61 2 900 8400 NATA # 1261 Sile # 18217 Brisbane 1/21 Smallwood Place Murarte QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Siln # 20794

Sample Receipt Advice

Company name:

Coffey Environmenta Pty Ltd NSW

Contact name: Project name:

Matthew Locke ER04835AB

COC number:

7705-7707

Turn around time: Date/Time received: 5 Day Feb 29, 2016 3:36 PM

Eurofins | mgt reference:

490931

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 6.6 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- ☑ Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone: +61 (2) 9900 8400 or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew_Locke@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Environmental Laboratory Air Analysis Water Analysis

NATA Accrecitation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Certificate of Analysis

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatawood NSW 2067

NATA Accredited Accredition Number 1281

Accredited for compleme with ISO/REC 17085. The results of the tests, cellorations end/or measurements included in this document are traceable to Autorializativational contraction.

Attention:

Matthew Locks

Report

490931-8 ER04835AB

Project name Received Date

Feb 29, 2016

Client Semple ID			TS 180225-17	TB 180225-16	DUP1	BH01/3.5-3.7
Sample Matrix			Soll	Soll	Soli	Soil
Eurofins mgt Sample No.			916-Fe27128	316-Fe27129	\$16-Fe27131	316-Fe27132
Dete Sampled		ŀ	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit				
TRH C8-C10 less BTEX (F1) ^{MM}	20	mg/kg		< 20		_
% Moisture	1	%	#	-	13	10
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C8-C9	20	mg/kg	98%	< 20	< 20	78
TRH C10-C14	20	mg/kg	-	:=:	< 20	< 20
TRH C15-C28	50	mg/kg			< 50	< 50
TRH C29-C36	50	mg/kg	3#		< 50	< 50
TRH C10-38 (Total)	50	mg/kg	74	<u> </u>	< 50	< 50
втех						
Benzene	0.1	mg/kg	98%	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	99%	< 0.1	0.3	3.0
Ethylbenzene	0.1	mg/kg	98%	< 0.1	0.6	3.9
n&p-Xylenes	0.2	mg/kg	99%	< 0.2	2.5	18
s-Xylene	0.1	mg/kg	99%	< 0.1	2.0	7.8
Cylenes - Total	0.3	mg/kg	99%	< 0.3	4.5	26
4-Bromofluorobenzene (surr.)	1	%	72	70	87	78
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH C6-C10	20	mg/kg	96%	< 20	-	
Volatile Organice						
Vaphthalene ^{htz}	0.5	mg/kg	-	< 0.5	_	I -
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{MOR}	0.5	mg/kg	-	±3.	2.1	4.8
TRH C6-C10	20	mg/kg	2#1	· ·	38	160
FRH C6-C10 less BTEX (F1)NM	20	mg/kg	322	-	33	130
IRH >C10-C16 less Naphthalens (F2)N01	50	mg/kg	-	-	< 50	< 50
Polycyclic Aromatic Hydrocarbona						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg			< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	(41	2	0.6	0.6
Senzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	- 2	1.2	1.2
Conaphthene	0.5	mg/kg		-	< 0.5	< 0.5
Cenaphthylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	1,00	#1	< 0.5	< 0.5
Benz(e)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	<u> </u>	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{ko7}	0.5	mg/kg	(a)	=	< 0.5	< 0.5
Benzo(g.h.l)perylene	0.5	mg/kg			< 0.5	< 0.5

Client Sample ID Sample Matrix			TS 100225-17 Soli	TB 160225-16 Soli	DUP1 Soli	BH01/3.5-3.7 Soli
Eurofins mgt Sample No.			816-Fe27128	816-Fe27129	816-Fe27131	816-Fe27132
Date Sampled			Feb 25, 2016	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(k)fluoranthene	0.5	mg/kg		<u> </u>	< 0.5	< 0.5
Chrysene	0.5	mg/kg		7#	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	_	/=	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-		< 0.5	< 0.5
Fluorena	0.5	mg/kg	_	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	X#	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-		< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	<u> </u>	<u> </u>	< 0.5	< 0.5
Pyrena	0.5	mg/kg	¥		< 0.5	< 0.5
Total PAH*	0.5	mg/kg		_	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	88	96
p-Terphenyl-d14 (surr.)	1	%	-	-	98	111
Total Recoverable Hydrocarbons - 201	3 NEPM Fractions					
TRH >C10-C16	50	mg/kg	_	χ. σ.	< 50	< 50
TRH >C18-C34	100	mg/kg	<u>-</u>	<u>-</u>	< 100	< 100
TRH >C34-C40	100	mg/kg	-		< 100	< 100
Heavy Metals						
Lead	5	mg/kg	· ·	<u>*</u>	19	18

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH01/0.4-0.5 Soll S16-Fe27133 Feb 25, 2016	BH02/0.5-0.6 Soil S16-Fe27134 Feb 25, 2018	BH02/3.3-3.5 Soil S16-Fe27135 Feb 25, 2016	BH03/0.86-0.2 Soil S16-Fe27136 Feb 25, 2016
		1				
% Moisture	1	%	10	12	10	14
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 60	< 60
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	0.2	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	0.4	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	2.1	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	2.2	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	4.3	< 0.3
4-Bromofluorobenzene (surr.)	1_1_	%	87	85	85	71
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{No2}	0.5	mg/kg	< 0.5	< 0.5	1.8	< 0.5
TRH C8-C10	20	mg/kg	< 20	< 20	39	< 20
TRH C6-C10 less BTEX (F1) ^{NB4}	20	mg/kg	< 20	< 20	34	< 20
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH01/0.4-0.5	BH02/9.5-0.6	BH02/3.3-3.5	BH03/0.05-0.2
Sample Matrix			Soli	Soll	Soll	Soli
Eurofins ingt Sample No.			816-Fe27133	916-Fe27134	816-Fe27135	816-Fe27138
Date Sampled			Feb 25, 2016	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocurbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.8	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenephthens	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	ma/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluctene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrens	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.6	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	94	96	94	97
p-Terphenyl-d14 (surr.)	1	%	105	109	108	111
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C18	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
_ead	5	mg/kg	72	74	21	140

Client Sample ID			BH03/1.9-2.0	HA02/0.0-0.15	HA01/0.05-0.15	HA03/0.5-0.6
Sample Matrix			Soli	Soll	Soll	Soli
Eurofins mgt Sample No.			S16-Fe27137	S16-Fe27138	S16-Fe27139	516-Fe27140
Date Sempled			Feb 25, 2016	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm		74	25	
pH (1:5 Aqueous extract)	0.1	pH Units	(34)	6.8	6.6	-
Total Organic Carbon ^{M10}	0.1	%		11	7.4	-
% Moleture	1	%	14	10	8.9	15
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	190	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	300	63	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	490	63	< 50


Client Semple ID			BH03/1.9-2.0	HA02/0.0-0.15	HA01/0.05-0.15	HA03/0.5-0.6
Sample Matrix			Soli	Soll	Soli	Soll
Eurofins mgt Sample No.			816-Fe27137	816-Fe27138	816-Fe27139	316-Fe27140
Date Sampled			Feb 25, 2016	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit	33 = 1, = 311			
BTEX	LOR) OILL	†	1		
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
måp-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xviens	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	71	90	89	90
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{ND2}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C8-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRIH C8-C10 less BTEX (F1)***	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.8	0.6	0.0	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{NO7}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/lea	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0,5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	11	%	96	94	103	93
p-Terphenyl-d14 (surr.)	11	<u>%</u>	107	108	112	108
Organochiorine Pesticides					ļ	
Chlordanes - Total	0.1	mg/kg		< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg		< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg		< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg		0.06	< 0.05	< 0.05
BHC	0.05	mg/kg	_	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg		< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg		< 0.05	< 0.05	< 0.05
4-BHC	0.05	mg/kg		< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg		< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg		< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg		< 0.05	< 0.05	< 0.05
Endosulfan sulphale Endrin	0.05	mg/kg mg/kg		< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05

Client Sample ID Sample Matrix			BH03/1.9-2.0 Soll	HA02/0.0-0.15	HA01/0.05-0.15	HA03/0.5-0.6
Eurofins mgt Sample No.			816-Fe27137	816-Fe27138	1	
					816-Fe27139	816-Fe27140
Date Sampled			Feb 25, 2016	Feb 25, 2016	Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit				
Organochiorine Pesticides	T	т —				
Endrin aldehyde	0.05	mg/kg		< 0.05	< 0.05	< 0.06
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
g-BHC (Lindane) Heptschlor	0.05	mg/kg	<u> </u>	< 0.05	< 0.05	< 0.05
Heptachior epoxide	0.05	mg/kg		< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg mg/kg		< 0.05	< 0.05 < 0.05	< 0.05
Methoxychlor	0.2	mo/ka		< 0.2	< 0.2	< 0.05 < 0.2
Toxaphane	1	ma/ka	120	<1	<1	<1
Dibutyichlorendate (aur.)	1	94		71	72	73
Tetrachloro-m-xylene (surr.)	1	%	_	74	74	79
Organophosphorus Pesticides (OP)		1 4		1 13	1.7	
Chlorpyrifoe	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Cournaphos	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Demeter (total)	1	mg/kg		<1	<1	<1
Diezinon	0.5	marka	-	< 0.5	< 0.5	< 0.5
Dichlorvos	0.5	ma/ka	52	< 0.5	< 0.5	< 0.5
Dimethoate	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Disulfoton	0.5	ma/ka	-	< 0.5	< 0.5	< 0.5
Ethoprop	0.5	mg/kg	.(#:	< 0.5	< 0.5	< 0.5
Fenitrothion	0.5	mg/kg		< 0.5	< 0.5	< 0.5
Fensulfothion	0.5	mg/kg		< 0.5	< 0.5	< 0.5
Fenthion	0.5	mg/kg		< 0.5	< 0.5	< 0.5
Methyl azinphos	0.5	mg/kg	225	< 0.5	< 0.5	< 0.5
<u>Valathion</u>	0.5	mg/kg	(m)	< 0.5	< 0.5	< 0.5
Methyl perathion	0.5	mg/kg	3#3	< 0.5	< 0.5	< 0.5
ViewInphas	0.5	mg/kg		< 0.5	< 0.5	< 0.5
Monocrotophos	10	mg/kg	-	< 10	< 10	< 10
Parathion	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Phorate	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Profenofos	0.5	mg/kg		< 0.5	< 0.5	< 0.5
Prothiofos	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Ronnel	0.5	mg/kg	(*)	< 0.5	< 0.5	< 0.5
Stirophoe	0.5	mg/kg		< 0.5	< 0.5	< 0.5
[richloronate	0.5	mo/kg	-	< 0.5	< 0.5	< 0.5
riphenylphosphate (surr.)	1_1_	1 %	-	78	90	99
Total Recoverable Hydrocarbons - 2013 NEPM Frac						
TRH >C10-C16 TRH >C16-C34	50	mg/kg	< 50	< 50	< 50	< 50
IRH >C34-C40	100	mg/kg	< 100	480	< 100	< 100
leavy Metals	1 100	mg/kg	< 100	< 100	< 100	< 100
Visenic	2	net-		7.4		
visenic Cadmium	0,4	mg/kg		7.1	6.6	9.8
chromium Chromium	5	mg/kg mg/kg	====	0.8	0.6 23	< <u>0.4</u>
Opper	5	mg/kg		77	28	40 < 5
.ead	5	mg/kg	100	500	170	24
Aercury	0.05	mg/kg	-	0.07	0.17	< 0.05
lickel	5	mg/kg	-	17	14	8.7
line	5	mg/kg		530	310	59

Client Sample ID			HA04/0.0-0.15	HA06/9.0-0.15
Sample Matrix			Solf	Soll
Eurofins mgt Sample No.			816-Fe27141	816-Fe27142
Date Sampled			Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit		
% Moisture	1	%	18	17
Total Recoverable Hydrocarbons - 1999 NEPM		т——		
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C16-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX		1		
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzane	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1_	<u> </u>	69	81
Total Recoverable Hydrocarbons - 2013 NEPM		T	405	405
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C8-C10	20	mg/kg	< 20	< 20
TRH C8-C10 less BTEX (F1)N64	20	mg/kg	< 20	< 20
TRH >C10-C16 less Naphthalene (F2)Ne1	50	mg/kg	< 50	< 50
Polycyclic Arometic Hydrocarbons	1 27	T -		10.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg		
Acenaphthene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Arithracene	0.5	mg/kg mg/kg	< 0.5	< 0.5
Benz(a)anthracene Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&)fluoranthene ^{NO7}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.l)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Senzo(k)nuoranmena Chrysene	0.5	marka	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorane	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyi (surr.)	1	%	100	95
p-Terphanyl-d14 (surr.)	1	%	114	108
Organochiorine Pasticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05

Client Semple ID Sample Matrix			HA04/0.0-0.15 Soll	HA06/9.0-0.15
Eurofins mgt Semple No.			816-Fe27141	816-Fe27142
Date Sempled			Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit		1 44 - 4, - 414
Organochiorine Pasticidas	1 20.0	1 Oraș		
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.06	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.06	< 0.05
Endrin	0.05	mg/kg	< 0.06	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychtor	0.2	mg/kg	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	<1
Dibutylchlorendate (aurr.)	1	%	74	71
Tetrachloro-m-xylene (surr.)	1	96	83	84
Organophosphorus Pesticides (OP)				
Chilorpyrifos	0.5	mg/kg	< 0.5	< 0.5
Cournaphos	0.5	mg/kg	< 0.5	< 0.5
Demeton (total)	1	mg/kg	< 1	< 1
Diezinon	0.5	mg/kg	< 0.5	< 0.5
Dichlorvos	0.5	mg/kg	< 0.5	< 0.5
Dimethoste	0.5	mg/kg	< 0.5	< 0.5
Disulfoton	0.5	mg/kg	< 0.5	< 0.5
Ethoprop	0.5	mg/kg	< 0.5	< 0.5
Fenitrothion	0.5	mg/ltg	< 0.5	< 0.5
Fensulfothion	0.5	mg/kg	< 0.5	< 0.5
Fenthion	0.5	mg/kg	< 0.5	< 0.5
Methyl azinphos	0.5	mg/kg	< 0.5	< 0.5
Malathion	0.5	mg/kg	< 0.5	< 0.5
Methyl perathion	0.5	mg/kg	< 0.5	< 0.5
Mevinphos	0.5	mg/kg	< 0.5	< 0.5
Monocrotophos	10	mg/kg	< 10	< 10
Parethion	0.5	mg/kg	< 0.5	< 0.5
Phorate	0.5	mg/kg	< 0.5	< 0.5
Profenctos	0.5	mg/kg	< 0.5	< 0.5
Prothiofos	0.5	mg/kg	< 0.5	< 0.5
Ronnel	0.5	m g/kg	< 0.5	< 0.5
Strophos	0.5	mg/kg	< 0.5	< 0.5
Trichloronate	0.5	mg/kg	< 0.5	< 0.5
Triphenylphosphate (surr.)	1 1	%	98	94
Total Recoverable Hydrocarbons - 2013 NEPM F				
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100

Client Sample ID Sample Matrix			HA04/0.0-0.15 Soli	HA05/0.0-0.15 Soli
Eurofins Ingt Sample No.			316-Fe27141	316-Fe27142
Dete Sampled			Feb 25, 2016	Feb 25, 2016
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	11	10
Cadmium	0.4	ma/ka	0.6	< 0.4
Chromium	5	mg/kg	36	49
Copper	5	mg/kg	33	19
Lead	5	mg/kg	89	78
Mercury	0.05	mg/kg	0.09	0.09
Nickel	5	mg/kg	8.4	7.4
Zine	5	mg/kg	260	180

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and snalysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
TRH C8-C10 less BTEX (F1)	Sydney	Feb 29, 2016	14 Day
- Method: LM-LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Mar 02, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Mar 02, 2016	14 Day
- Method: TRH C8-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 01, 2016	14 Day
- Nethod: TRH CS-C40 - LTM-ORG-2010			
Volatile Organics	Sydney	Mar 01, 2016	7 Day
- Method; E016 Volatile Organic Compounds (VOC)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 02, 2016	14 Day
- Method: TRH C6-C40 - LTM-CRG-2010			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Mar 02, 2016	7 Day
- Method: LTM-INO-4030			
Ion Exchange Properties	Melbourne	Mar 03, 2016	
pH (1:5 Aqueous extract)	Sydney	Mar 02, 2016	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Mar 02, 2016	28 Day
- Method: APHA 65106 Total Organic Carbon			
Organochiorine Pesticides	Sydney	Mar 02, 2016	14 Day
- Method: E013 Organochiorine Pesticides (OC)			
Organophosphorus Pesticides (OP)	Sydney	Mar 02, 2016	14 Day
- Method: E014 Organophosphorus Peeticides (OP)			
Metals M8	Sydney	Mar 02, 2016	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MIS			
Heavy Metals	Sydney	Mar 02, 2016	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Sydney	Feb 29, 2016	14 Day
- Method: LTM-GEN-7080 Moleture			
Eurofins mgt Suite B4			
Polycyclic Aromatic Hydrocarbons	Sydney	Mar 02, 2018	14 Day
- Method: E007 Polyarometic Hydrocarbons (PAH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 02, 2016	14 Day
- Mathod: TRRI C8-C40 - LTM-ORG-2010			

🔅 eurofins

mgt

Brisbens 1/21 Brasilwood Place Muranis QLD 4172 Phorm : +61 7 3002 4600 NATA # 1201 Sits # 20794

Sydney Unk FS, Building F 16 Mers Road Mers Road Phone : 461 2 8000 8400 NATA # 1261 516 # 18217

Melbourne 3-5 Kingelon Town Close Oxidelijn VIC 3166 Pranes : +61 3 8564 5000 NATA # 1261 She # 1254 & 14271

ABN - 50 005 085 G21 4.mail : EnviroBales@eurofins.com.au web : www.eurofins.com.au

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway

Company Name: Address:

ER04835AB Chatswood NSW 2067

Project Name:

Feb 29, 2016 3:36 PM Mar 7, 2016 5 Day Matthew Looke Received: Due: Priority: Contact Name:

BTEX and Volatile TRH			×				×	×								
Eurofine mgt Suite B4			×						×	×	×	×	×	×	×	×
Cation Exchange Capacity		×	×													×
Moieture Set			×						×	×	×	×	×	×	×	×
Organophosphorus Pesticides (OP)			×													×
Metals M8			×													×
Organochlorine Pesticides			×								L					×
Total Organic Carbon	Ш	×														×
pH (1:5 Aqueous extract)	Ц		×													×
Lead	Ц		×						×	×	×	×	×	×	×	
HOLD	Ц		×													
Asbestos Absence /Presence			×													×
						CAB ID	S16-Fe27128	S16-Fe27129	S16-Fe27131	S18-Fe27132	S16-Fe27133	S18-Fe27134	S16-Fe27135	\$16-Fe27138	S16-Fe27137	S16-Fe27138
		1271				Metrix	904	Sof	Soil	Soil	Soil	Soll	Soll	Soil	Soll	Soil
Sample Detail	nducted	Ibs # 1254 & 14	# 18217	₽ # 20794		Sampling										
	aboratory where analysis is conducted	Welbourne Laboratory - NATA Site \$ 1254 & 14271	rdney Laboratory - NATA Sits # 18217	Brisbane Laboratory - NATA Site # 20794	ntory	Sample Date	Feb 25, 2018	Feb 25, 2016	Feb 25, 2018	Feb 25, 2018	Feb 25, 2018					
	Laboratory whe	Melbourne Lab	Sydney Laborat	Brisbene Labor	External Laboratory	Semple ID	TS 160225-17	TB 160225-16	DUP1	BH01/3.5-3.7	BH01/0.4-0.5	BH02/0.5-0.8	BH02/3.3-3.5	BH03/0.05-0.2	BH03/1.9-2.0	HA02/0.0-0.15

ABN - 50 006 085 621 a.mail: EnviroBalos@eurofint.com.au wab: www.aurofint.com.au

Sydney
Lint FS, Building F
16 Mars Road
Luns Cove West NSW 2098
Phone : 461 2 8000 8400
NATA # 1261 Slim # 18217

Brisbers 1/21 Smaltwood Pinos Murantis CALD 4172 Phores : 461 7 3602 4600 NATA # 1201 Sits # 20794

Melbourne 3-5 Kingelan Town Class Catalogin VIC 3196 Phores : 451 3 4564 5000 NATA # 1261 Sibs # 1254 & 14271

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway

Company Name: Address:

ER04835AB Chatewood NSW 2067

Project Name:

Received: Due: Priority: Contact Name:

5 Day Matthew Locks

Feb 29, 2016 3:36 PM Mer 7, 2016

Organochlorine Pesticides X <th>×</th> <th><</th> <th>×</th> <th><</th>	×	<	×	<
Total Organic Carbon				
Total Organic Carbon × × ×				
	П	t		
Organochlorine Pesticides X X X X X				1
Metals M8 X X X X X	H	+	-	Т
Organophosphorus Pesticides (OP)	Н	1		
Moisture Set × × × ×		1	L	I
Cation Exchange Capacity ×× × ×		1		1
BTEX and Volatile TRH Eurofine mgt Suite B4	H	1	H	†

a.mail: EnviroSales@eurolins.com.au

Brisberns 1/21 Smallwood Place Muranis QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Sits # 20794

Melbourne 3-5 Idngelon Town Close Catalogia V.C. 3186 Phone : +61 3 6564 5000 NATA # 1261 Sibs # 1264 & 14271

web: www.eurofine.com.eu

Sydney Link FS, Building F 16 Mars Road Thome: 401 2 9000 8400 NATA # 1281 Shin # 18217

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway

Company Name: Address:

ER04835AB Chatewood NSW 2087

Project Name:

Order No.: Report#: Phone: Fex:

5 Day Matthew Locke Received: Due: Priority: Contact Name:

Feb 29, 2016 3:36 PM Mar 7, 2016

Eurofins | mgt Cilent Manager: Charl Du Preez

BTEX and Volatile TRH Eurofine | mgt Suite B4 × Cation Exchange Capacity × Organophosphorus Pesticides (OP) Metals M8 Organochlorine Pesticides Total Organic Carbon pH (1:5 Aqueous extract) × × × × × HOLD Asbestos Absence /Presence S16-Fe27154 S16-Fe27152 S16-Fe27155 S16-Fe27158 S16-Fe27159 S16-Fe27160 S16-Fe27150 S16-Fe27151 S16-Fe27153 S16-Fe27157 S16-Fe27158 Soll Sol Sol Sol Soll Sol Sol Soll Soll Melbourne Laboratory - NATA Site # 1254 & 14271 Sample Detail Briebene Laboratory - NATA Site \$ 20794 Laboratory where analysis is conducted Sydney Laboratory - NATA Site # 18217 Feb 25, 2016 BH02/2.2-2.4 | Feb 25, 2018 BH02/0.7-0.8 | Feb 25, 2016 BH03/0.5-0.6 | Feb 25, 2016 Feb 25, 2016 BH03/5.4-5.5 | Feb 25, 2016 HA02/0.6-0.9 | Feb 25, 2018 BH02/5.8-8.0 | Feb 25, 2016 BH02/4.2-4.8 | Feb 25, 2016 Feb 25, 2018 Feb 25, 2016 External Laboratory BH03/0.6-0.9 BH03/4.0-4.2 HA02/0.3-0.5 BH03/3.0-3.1

Malbourne 3-5 Kingston Town Close Cadedigh VIC 3168 Phane: -461 3 8564 5000 NATA # 1261 Sits # 1264 & 14271

Brisbens 1/21 Smallwood Places Marurin QLD 4172 Phoma: +61 7 3002 4600 NATA # 1261 Site # 20794

Sychey Unit FS, Bullding F 16 Mars Road Lane Cove West NSW 2086 Phone : +61 2 5900 8400 NATA # 1261 Shn # 48217

ABN -- 50 005 065 621 a.meil : EnviroBalse@eurofins.com.au wab : www.aurofins.com.au

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd NSW
Level 20, Tower B, Citadel Tower 799 Pacific Highway
Chatawood
NSW 2067

Company Name: Address:

ER04835AB

Project Name:

Feb 29, 2016 3:36 PM Mar 7, 2016 5 Day Matthew Locke Recalved: Due: Priority: Contact Name:

BTEX and Volatile TRH			×										
Eurofine mgt Suite B4			×			Г							
Cation Exchange Capacity		×	×								j		
Moisture Set			×										
Organophoephorus Pesticides (OP)			×			Г							
Metals M8			×										
Organochlorine Pesticides			×										
Total Organic Carbon		×											
pH (1:5 Aqueous extract)			×										
Lead			×										
HOLD			×			×	×	×	×	×	×	×	×
Asbestos Abeence /Presence			×			П	П						
						S16-Fe27161	S16-Fe27162	S16-Fe27163	S16-Fe27164	S16-Fe27165	S16-Fe27168	S16-Fa27167	S16-Fe27168
Bemple Detail	ducted	b \$ 1254 & 14271	16217	\$ 20794		Soll	Soll	Nos	Soil	Soll	Soll	Soll	Soll
	aboratory where analysis is conducted	Selboume Laboratory - NATA Sits # 1254 & 14271	Sydney Laboratory - NATA 8ths # 18217	Brisbane Laboratory - NATA Site \$ 20794	External Laboratory	3.9-1.0 Feb 25, 2018	HA01/0.4-0.5 Fab 25, 2018	HA03/0.0-0.15 Feb 25, 2018	1.6-0.9 Feb 25, 2016	1.3-0.4 Feb 25, 2018	1.5-0.8 Feb 25, 2018	.8-0.9 Feb 25, 2018	Feb 25, 2018
	Labora	Malbot	Sydney	Brisbe	Edw	HA01/0.9-1.0	HA01/0	HADGAD	HA03/0.6-0.9	HA04/0.3-0.4	HA05/0.5-0.8	HA05/0.6-0.9	SP01-1

internal Quality Control Review and Glossary

Genera

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Splices, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be evaluated on required to the QC report where applicable.
- 2. All acit results are reported on a dry beals, unless otherwise stated.
- 3. Actual LORs are mainty dependent, Quoted LORs may be relised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for metrix spiles or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'us received' basis. 7. This report replaces any interior results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timefreme, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be cutaide the laboratory's control.

"NOTE: pH duplicates are reported as a range NOT as RPD

Links

mg/kg: millgrams per Kliogram ug/l: micrograms per litre ppb: Parls per billion

mg/k milligrerne per litre ppns: Parts per million %: Percentage

org/100ml: Organisms per 100 millitres

MPN/100mL: Most Probable Number of organisms per 100 millitres

NTU: Nephelometric Turbidity Units

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

PIKE Addition of the analyte to the sample and reported as percentage recovery.

REPD Relative Percent Difference between two Duplicate places of analysis.

LCB Laboratory Control Sample - reported as percent recovery

LCB Laboratory Control Sample - reported as percent recovery CRM Certified Reference Mateuriel - reported as percent recovery

Method Blank in the case of solid samples these are performed on laboratory certified clean sands.

in the case of water samples these are performed on de-lonked water.

Surr - Surrogate

The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicete A second piece of analysis from the same sample and reported in the same units as the natual to show comparison.

Betch Duplicete A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Splice recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

UREPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (Eurofins | Imgt uses NATA accredited in-house method LTM-GEN-7010)

TCLP Toxicity Cheructeristic Leaching Procedure

COC Chain of Custody
SRA Semple Receipt Advice

CP Client Perent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on semples not pertaining to this report, QC is representable of the sequence or balan that client complex were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Ramulis between 10-20 times the LOR: RPD must lie between 0-60% Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenois 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract distilion required due to interference or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that status the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the lebowatory sample batch at a 1:10 mile. The Perent and Duplicate data shown is not data from your samples.
- 3. Organochicrine Peeticide analysis where reporting LCS data, Toxephone & Chlordene are not added to the LCS.
- 4. Organochicrine Posticide analysis where reporting Spike date, Toxephene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the sange of C12-C30 is added and Ke Total Recovery is reported in the C10-C14 call of the Report.
- pH and Free Chlorine energies in the laboratory Analysis on this text must begin within 30 minutes of sampling. Therefore laboratory analysis is unifically to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Splice & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyse.
- 6. Polychiartnesied Biphenryls are spiked only using Aradior 1260 in Matrix Spiese and LCS.
- 9. For Main's Spikes and LCS results a desh "-" in the report means that the specific analyte was not added to the GC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	< 10	10	Pass	
Total Organic Carbon	%	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	m <u>a</u> /ka	< 20	20	Pass	
TRH C10-C14	ma/ka	< 20	20	Pass	
TRH C15-C28	ma/ka	< 50	50	Pasa	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
втех					
Benzana	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pess	
Ethylbenzene	ma/ka	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pasa	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank				1 000	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	flons				
TRH C8-C10	m <u>a</u> /ka	< 20	20	Pass	
Method Blank	Treat read		20	1 000	
Volatile Organics					
Naphthelene	mg/kg	< 0.5	0.5	Pess	
Method Blank	IIIMA	- 0.0	0.9	ress	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	Hone				
Naphthalene	m <u>a</u> /ka	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	I IIIgky	1 20		PESS	
Polycyclic Arometic Hydrocarbons		T T			
Acenaphthene		405	0.5	D	
Acenaphiliylene	rng/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pess	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrane	mg/kg	< 0.5	0.5	Pass	
Method Blank				MES	
Organochiorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pasa	
4.4'-DDD	ma/ka	< 0.05	0.05	Pass	
4.4'-DDE	rng/kg	< 0.05	0.05	Pass	
4.4'-DOT	rna/ka	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	


Test	Unite	Result 1	Acceptance Limits	Paes Limits	Qualifying Code
Aldrin	mg/kg	< 0.05	0.06	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.06	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	ma/ka	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.06	Pass	
Endrin	ma/ka	< 0.05	0.06	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	rng/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.06	Page	
	mg/kg	< 0.05	0.05	Pass	
Heptschlor sposide		< 0.05	0.06	Pass	
Hexachlorobenzene	mg/kg		0.2	Pass	
Methocychlor	mg/kg	< 0.2			
Toxaphene	mg/kg	<1	1.1	Pess	
Method Blank	ALCOHOL:				_
Organophosphorus Pesticides (OP)	T			-	
Chlorpyrifos	mg/kg	< 0.5	0.5	Pass	
Cournaphos	mg/kg	< 0.5	0.5	Pass	
Diazinon	mg/kg	< 0.5	0.5	Pass	
Dichlorvos	mg/kg	< 0.5	0.5	Pass	
Dimethoate	mg/kg	< 0.5	0.5	Pass	
Disulfoton	mg/kg	< 0.5	0.5	Pass	
Ethoprop	mg/kg	< 0.5	0.5	Pass	
Fenitrothion	mg/kg	< 0.5	0.5	Pass	
Fensulfothion	mg/kg	< 0.5	0.5	Pass	
Fenthion	mg/kg	< 0.5	0.5	Pass	
Methyl azinphos	mg/kg	< 0.5	0.5	Pass	
Melathion	mg/kg	< 0.5	0.5	Page	
Methyl parathion	mg/kg	< 0.5	0.5	Pass	
Mevinghos	mg/kg	< 0.5	0.5	Pass	
Monocratophos	mg/kg	< 10	10	Pass	
Parathion	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Phoreto		< 0.5	0.5	Pass	
Profenofos	mg/kg				
Prothiofos	mg/kg	< 0.5	0.5	Pass	
Ronnel	mg/kg	< 0.5	0.5	Pass	
Stirophos	mg/kg	< 0.5	0.5	Pass	
Trichloronate	mg/kg	< 0.5	0.5	Pass	
Method Blank				D-V	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	. N., A				
Hemy Metals					
Arsenic	mg/kg	<2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	<5	5	Pass	
Copper	mg/kg	<5	5	Pass	
	mg/kg	<5	5	Pass	
Leed	mg/kg	< 0.05	0.06	Pass	1
Mercury					

Test	Unita	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Ion Exchange Properties					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery				1115	
Total Organic Carbon	%	125	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPH I	Fractions				
TRH C8-C9	%	92	70-130	Pass	
TRH C10-C14	%	74	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	98	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	88	70-130	Pass	
m&p-Xylenee	%	90	70-130	Pass	
o-Xylane	%	90	70-130	Pass	
Xylenes - Total	%	90	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions				
TRH C8-C10	%	98	70-130	Pass	
LCS - % Recovery			10:100		
Volatile Organics					
Naphthelene	%	81	70-130	Pass	
LCS - % Recovery			10-100	F 0.05	
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions	l l			
Naphthalana	%	85	70-130	Pass	-
TRH C6-C10	- %	104	70-130		_
LCS - % Recovery	- A	104	70-130	Pass	
Polycyclic Aromatic Hydrocarbons					
Acensphiliene	%	440	70.400	D	
Acenephthylene	75 %	118	70-130	Pass	
Anthracene		100	70-130	Pass	
	<u>%</u>	123	70-130	Pass	
Benz(a)anthracene	% *	104	70-130	Pass	
Benzo(a)pyrene	<u>%</u>	102	70-130	Pass	
Benzo(b&j)fluoranthene	%	110	70-130	Pass	
Benzo(g.h.i)perylene	<u>%</u>	90	70-130	Pass	
Benzo(k)fluoranthene	%	111	70-130	Pass	
Chrysene	%	115	70-130	Pass	
Dibenz(a.h)anthracena	*	100	70-130	Pass	
Fluoranthene	%	113	70-130	Pass	
Fluorene	*	118	70-130	Pass	
Indenc(1.2.3-cd)pyrene	<u>%</u>	99	70-130	Pass	
Naphthalene	<u>%</u>	126	70-130	Pass	
Phenanthrane	*	123	70-130	Pass	
Pyrene	1 %	118	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordenes - Total	%	120	70-130	Pass	
4.4'-DDD	%	129	70-130	Pass	
4.4'-DDE	%	119	70-130	Pass	
4.4'-DDT	%	71	70-130	Pess	
g-BHC	%	118	70-130	Pass	
Aldrin	%	122	70-130	Pass	

	Test		Unite	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
b-BHC			%	111		70-130	Pass	
d-BHC			%	125		70-130	Pass	
Dieldrin			%	120		70-130	Pass	
Endosuifan I			%	118		70-130	Pass	
Endosulfan II			%	117		70-130	Pass	
Endosulfan sulphate			%	122		70-130	Pass	
Endrin			%	109		70-130	Pass	
Endrin aldehyde			%	127		70-130	Pass	
Endrin ketorie			%	119		70-130	Pass	
g-BHC (Lindane)			%	114		70-130	Pass	
Heptachlor			%	117		70-130	Pass	
Heptachlor apoxide			%	117		70-130	Pass	
Haxachlorobenzene			%	112		70-130	Pass	
Methoxychior			%	83		70-130	Pass	
Toxaphene			%	73		70-130	Pass	
LCS - % Recovery	and the second second	500				Sprinkly		
Organophosphorus Pesticid	les (OP)							
Chlorpyrifos			%	122		70-130	Pass	
Couraphos			%	71		70-130	Pass	
Diazinon			%	85		70-130	Pass	
Dimethoata			%	128		70-130	Pass	
Disuffoton			%	129		70-130	Pass	
Methyl azinphos			%	118		70-130	Pass	
Melathion			%	129		70-130	Pass	
Methyl parathion			%	124		70-130	Pass	
Parathion			%	127		70-130	Pass	
Phorate			%	128		70-130	Pess	
Stirophos			%	121		70-130	Pass	
LCS - % Recovery	100000000000000000000000000000000000000			1.000.7/	2004	10 100		
Total Recoverable Hydrocan	2041 NEDU E	lene		1		T	Г —	
TRH >C10-C18	DOUR - ZUIJ MEPM FIRG	ACHIB	%	74		70-130	Pass	
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		70		() () () () () () () ()	70-100	1 0.00	
LC8 - % Recovery				_		T		
Heavy Metals			%	80		70-130	Pass	
Arsenic				80		70-130	Pass	
Cadmium	-		%	86				-
Chromium			%	94		70-130	Pass	-
Соррег			<u>%</u>	94		70-130	Pess	
Leed			%	90		70-130	Pass	-
Mercury			<u>%</u>	89		70-130	Pass	
Nickel			.%	76		70-130	Pess	
Zing			%	95		70-130	Pass	A
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pags Limits	Qualifying Code
Spike - % Recovery				Sections		و و المارات	200	
Total Recoverable Hydrocar	bons - 1999 NEPM Frac	ions		Result 1				
TRH C10-C14	S16-Fe27133	CP	%	83		70-130	Pass	
Spike - % Recovery		0-1	- 1	RIV - III				
Total Recoverable Hydrocar	bons - 2013 NEPM Frac	lions		Result 1				
TRH >C10-C16	S16-Fe27133	CP	%	84		70-130	Pass	
Spike - % Recovery			200		S HAY THE	Description.	. 188	
Heavy Metals				Result 1				
Araenic	\$16-Fe27135	CP	%	83		70-130	Pass	
Cadmium	S16-Fe27135	CP	%	92		70-130	Pass	
Chromium	S16-Fe27135	CP	%	87		70-130	Pass	

Test	Lab Sample ID	QA Source	Unita	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Lead	S16-Fe27135	CP	%	93		70-130	Pass	
Mercury	\$16-Fe27135	CP	%	97		70-130	Pass	
Nickel	S16-Fe27135	CP	- %	85		70-130	Pass	
Zinc	S16-Fe27135	CP	%	75		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocar	bons			Result 1				
Acenaphthene	S16-Fe27136	CP	%	113		70-130	Pass	
Acenaphilitylene	S16-Fe27136	CP	%	99		70-130	Pass	
Anthracene	S16-Fe27136	CP	%	118		70-130	Pass	
Benz(a)anthracene	S16-Fe27136	CP	%	106		70-130	Pass	
Benzo(a)pyrene	S16-Fe27136	CP	- %	108		70-130	Pass	
Benzo(b&j)fluoranthene	S16-Fe27136	CP	%	105		70-130	Pass	
Benzo(g.h.i)perylene	S16-Fe27136	CP	%	98		70-130	Pass	
Benzo(k)fluorarithene	S16-Fe27136	CP	%	116		70-130	Pass	
Chrysene	S16-Fe27136	CP	%	113		70-130	Pass	
Dibenz(a_h)enthracens	\$16-Fe27136	CP	%	103		70-130	Pass	
Fluorenthene	S16-Fe27136	CP	%	118		70-130	Pass	
Fluorene	S16-Fe27136	CP	%	113		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S16-Fe27136	CP	%	100		70-130	Pass	
Naphthalene	S16-Fe27136	CP	%	118		70-130	Pass	
Phenanthrene	S16-Fa27136	CP	%	120		70-130	Pass	
Pyrene	S18-Fe27136	CP	%	118		70-130	Pass	
Spike - % Recovery	1 010-1 627100	Qr 1	-	110		70-130	Гава	
Organochiorine Pesticides				Result 1			_	
Chlordanes - Total	S16-Fe26148	NCP	%	88		70-130	Pass	
4.4'-DDD	S16-Fe26148	NCP	%	79		70-130	Pass	
4.4'-DDE	S16-Fa28148	NCP	%	86		70-130		
4.4'-DDT	S16-Fe28148	NCP	%	77			Pass	
a-BHC	S16-Fe26148	NCP	%			70-130	Pass	
Aldrin				90		70-130	Pess	
b-BHC	S16-Fe26148	NCP NCP	%	95	-	70-130	Pass	
d-BHC	S18-Fe26148			82		70-130	Pass	
	\$16-Fe26148	NCP	<u>%</u>	101		70-130	Pess	
Dieldrin	\$16-Fe28148	NCP	%	83		70-130	Pass	
Endosulfan I	S16-Fe28148	NCP	%	87		70-130	Pass	
Endosulfan II	\$16-Fe26148	NCP	%	77		70-130	Pass	
Endosulfan sulphate	S16-Fe26148	NCP	%	80		70-130	Pass	
Endrin	S16-Fe26148	NCP	%	83		70-130	Pass	
Endrin aldehyde	S16-Fe28148	NCP	<u>%</u>	70		70-130	Pass	
Endrin ketone	S16-Fe26148	NCP	%	85		70-130	Pass	
g-BHC (Lindane)	S16-Fe26148	NCP	76	83		70-130	Pass	
Heptachlor	\$16-Fe26148	NCP	_%	103		70-130	Pass	
Heptachlor epoxide	\$16-Fe26148	NCP	- %	83		70-130	Pass	
Hexachlorobenzene	S16-Fe26148	NCP	%	89		70-130	Pass	
Methoxychlor	\$16-Fe26148	NCP	%	81		70-130	Pass	
Toxaphene	S16-Ma02116	NCP	- %	74		70-130	Pass	
plie - % Recovery		200					TIL Y	
Organophosphorus Pesticides	(OP)			Result 1				
Chlorpyrifos	S16-Ma01179	NCP	%	84		70-130	Pass	
Coumaphos	S16-Ma02242	NCP	%	79		70-130	Pass	
Diazinon	S16-Ma01179	NCP	%	84		70-130	Pass	
Fenitrothion	S16-Ma01179	NCP	%	104		70-130	Pass	
Methyl azinphos	S16-Ma01179	NCP	%	82		70-130	Pass	
Malathion	S18-Ma01179	NCP	%	81		70-130	Pass	
Phorate	S16-Ma01179	NCP	%	85		70-130	Pass	

Test	Lab Sample ID	QA Source	Unite	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Stirophos	\$16-Mg01179	NCP	%	75			70-130	Pass	
Spike - % Recovery									
Heavy Metals		432		Result 1			_		
Arsenic	\$16-Ma01134	NCP	%	88			70-130	Pass	
Cadmium	S16-Ma01134	NCP	%	100			70-130	Pass	
Chromium	S16-Ma01134	NCP	%	96			70-130	Pass	
Copper	S16-Ma01134	NCP	%	91			70-130	Pass	
Mercury	S18-Ma01134	NCP	%	94			70-130	Pass	
Nickel	S16-M=01134	NCP	%	91			70-130	Pass	
Zinc	\$16-Ma01995	NCP	%	107			70-130	Pass	
Spike - % Recovery				S. Telle					
Total Recoverable Hydrocar	tions - 1999 NEPM Frac	lons		Result 1					
TRH C8-C9	S16-Fe27140	CP	%	84			70-130	Pess	
Spike - % Recovery					on the ne	100			
BTEX				Result 1					
Berizane	S16-Fe27140	CP	%	115			70-130	Pass	
Toluena	S16-Fe27140	CP	%	94			70-130	Pass	
Ethylbenzene	S16-Fe27140	CP	%	91			70-130	Pass	
måp-Xylenes	\$16-Fe27140	CP	%	93			70-130	Pass	
o-Xylene	S16-Fe27140	CP	%	94			70-130	Page	
Xylenes - Total	S16-Fe27140	CP	%	93	i i		70-130	Pass	
Spike - % Recovery	10101 DE 1140	<u> </u>	W III		5 VI VI	N.A.N		1	
Total Recoverable Hydrocar	hone - 2013 NEPH Frac	lone		Result 1					
TRH C8-C10	\$16-Fe27140	CP	%	93			70-130	Page	
Spike - % Recovery	010-1-0271-10			100		N 1 2 0		10000	
Volatile Organics				Result 1					
Naphthalene	\$16-Fe27140	CP	%	82			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Page Limits	QualifyIng
Duplicate	WILLIAM WAR - LEA		THE RESERVE		18.00	200	The same		
Dispirodis .				Result 1	Result 2	RPD	T		
% Moisture	S16-Fe27132	CP	%	10	9.7	5.0	30%	Pess	
Duplicate	C) (C-) GE/ TOE	U -		10	0.1	0.0	1 0070	1 444	
Total Recoverable Hydrocar	hone - 1000 NEDM Eme	lann		Result 1	Result 2	RPD	T		
TRH C10-C14	S16-Fe27132	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Fe27132	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Fe27132	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	310-1621132	I CF I	ПДИМ	1 30	- 50		3076	1 446	
Total Recoverable Hydrocar	have 2012 NEDM Empl	lane.		Result 1	Result 2	RPD	T		
		CP		< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S16-Fe27132	CP	mg/kg		< 100	<1	30%	Pass	
TRH >C16-C34	S16-Fe27132		mg/kg	< 100	< 100	<1	30%	_	
TRH >C34-C40	S16-Fe27132	CP	mg/kg	< 100	100		3076	Pass	
Duplicate	The Revenue of the Control of the Co	A DEL	1	Dec. 8.4	Dog 40	BDD			
Heavy Metals	040 5-07404	00		Result 1	Result 2	RPD	2007	Desa	
Arsenic	S16-Fe27134	CP	mg/kg	12	13	10	30%	Pass	
Cadmium	S16-Fe27134	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Fa27134	CP	mg/kg	37	44	16	30%	Pass	
Copper	S16-Fe27134	CP	mg/kg	19	15	24	30%	Pass	
Lead	S16-Fe27134	CP	mg/kg	74	84	14	30%	Pass	
Mercury	S16-Fa27134	CP	mg/kg	0.33	0.32	5.0	30%	Pass	
Nickel Zinc	S16-Fe27134 S16-Fe27134	CP CP	mg/kg mg/kg	100	< 5 78	19	30%	Pass Pass	

Duplicate				1				
Polycyclic Arometic Hydrocarbon	ia .			Result 1	Result 2	RPD		
Acenaphthene	S16-Fe27135	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Acenaphthylene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Anthracene	S16-Fe27135	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pasa
Benz/a)anthracane	S16-Fe27135	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pasa
Benzo(a)pyrena	S16-Fe27135	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pasa
Benzo(b&l)fluoranthene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pess
Benzo(a.h.i)perviene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Benzo(k)fluoranthene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pasa
Chrysene	S16-Fe27135	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pesa
Dibenz(a.h)enthracene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pasa
Fluoranthene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pesa
Fluorene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pasa
Indeno(1.2.3-cd)pyrene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pasa
Naphthalene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Phenanthrene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Pyrene	S16-Fe27135	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Duplicate				, A. (J.)				
				Result 1	Result 2	RPD		
Conductivity (1:5 aqueous extract at 25°C)	M18-Ma00750	NCP	u\$/cm	53	47	13	30%	Pess
pH (1:5 Aqueous extract)	S16-Fa26121	NCP	pH Units	4.9	4.9	pass	30%	Pass
Ouplicate								
Organophosphorus Pesticides (O	P)			Result 1	Result 2	RPD		
Chlorpyrifoe	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Coursphos	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Diazinon	S18-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Dichlorvos	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Dimethoata	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Disutfoton	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Ethoprop	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Fenitrothion	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Fensulfothion	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Fenthion	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Methyl azinphos	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Malathion	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pess
Methyl parathion	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Mevinphos	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Monocratophoe	S16-Ma01178	NCP	mg/kg	< 10	< 10	<1	30%	Pass
Parathion	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Phorate	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Profenofos	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Prothiofos	S18-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Ronnel	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Stirophos	S16-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Trichloronate	S18-Ma01178	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Pupilicate	W. N. D. C.							
				Result 1	Result 2	RPD		
Total Organic Carbon	S16-Fe27139	CP	%	7.4	8.6	16	30%	Pass
Duplicats	1-9 124 1-2,82						الأحاو كا	
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD		
TRH C8-C9	S16-Fe27139	CP	mg/kg	< 20	< 20	<1	30%	Pass

BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbone TRH C6-C10 Duplicate	\$16-Fe27139 \$16-Fe27139 \$16-Fe27139 \$16-Fe27139 \$16-Fe27139	CP CP CP	mg/kg mg/kg	Result 1 < 0.1	Result 2 < 0.1	RPD <1	30%	Pass	
Toluena Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbone TRH C6-C10	\$16-Fe27139 \$16-Fe27139 \$16-Fe27139 \$16-Fe27139	СР				<1	30%	Pass	
Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbone TRH C6-C10	S16-Fe27139 S16-Fe27139 S16-Fe27139		mg/kg	104					
m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbone TRH C6-C10	S16-Fe27139 S16-Fe27139	CP		< 0.1	< 0.1	<1	30%	Pasa	
m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbone TRH C6-C10	S16-Fe27139		mg/kg	< 0.1	< 0.1	<1	30%	Pasa	
o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbone TRH C6-C10		CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total Duplicate Total Recoverable Hydrocarbons TRH C6-C10		СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate Total Recoverable Hydrocarbone TRH C6-C10	S16-Fa27139	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pasa	
Total Recoverable Hydrocarbone TRH C6-C10		The Late							
TRH C6-C10	- 2013 NEPM Fract	lons		Result 1	Result 2	RPD			
CONTRACTOR OF THE PARTY OF THE	S16-Fe27139	СР	mg/kg	< 20	< 20	<1	30%	Pasa	
				100		- 170.19	7 2 4	1	•
Volatile Organice				Result 1	Result 2	RPD			
Naphthalene	S16-Fe27139	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pasa	
Duplicate			111,511	30 Th. I		R I	ZI UNI		
Organochiorine Pasticidea				Result 1	Result 2	RPD			
Chlordenea - Total	S16-Fe27139	СР	rng/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Fe27139	CP	mg/kg	< 0.05	0.07	200	30%	Fall	Q15
4.4'-DDE	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	413
4.4'-DDT	S16-Fe27139	CP	mg/kg	< 0.05	0.40	160	30%	Fall	Q15
4.4-001 a-BHC	S16-Fe27139	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pasa	Q10
Aldrin	S16-Fe27139	CP		< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Fe27139	CP	mg/kg mg/kg	< 0.05	< 0.05	<1	30%	Pass	
		CP			< 0.05	<1	30%	Pasa	
d-BHC	S16-Fe27139		mg/kg	< 0.05		<1	30%		
Dieldrin	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05			Pass	
Endosulfan I	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pasa	
Endosulfan suiphate	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pesa	
Endrin	S16-Fe27139	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pasa	
Endrin aldehyde	S16-Fe27139	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pasa	
Endrin ketone	S16-Fe27139	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pess	
g-BHC (Lindane)	S16-Fe27139	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Fe27139	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pasa	
Methoxychlor	S16-Fa27139	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Fe27139	CP	mg/kg	<1	<1	<1	30%	Pass	
Duplicate			20 1	مستيار	illian it.				
				Result 1	Result 2	RPD			
% Moisture	S16-Fe27142	CP	96	17	16	7.0	30%	Pasa	
Duplicate	Side the fine				L ST				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	lons		Result 1	Result 2	RPD			
TRH C10-C14	S16-Fe27142	CP	mg/kg	< 20	< 20	<1	30%	Pasa	
TRH C15-C28	S16-Fe27142	CP	mg/kg	< 50	< 50	<1	30%	Pasa	
TRH C29-C36	S16-Fe27142	CP	mg/kg	< 50	< 50	<1	30%	Pess	
Duplicate					-3 19 3	mail-		5 8 B	
otal Recoverable Hydrocarbona	- 2013 NEPM Fract	lons		Result 1	Result 2	RPD			
TRH >C10-C18	S16-Fe27142	СР	mg/kg	< 50	< 50	<1	30%	Pasa	
TRH >C16-C34	S16-Fe27142	CP	mg/kg	< 100	< 100	<1	30%	Pasa	
TRH >C34-C40	S16-Fe27142	CP	mg/kg	< 100	< 100	<1	30%	Pasa	
Duplicate						T. 2 TI			
leavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Fe27142	СР	mg/kg	10	13	26	30%	Pass	
Cadmium	S16-Fe27142	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pasa	
S III. S. I. II. S. I.		CP	mg/kg	49	34				Q15
Chromium Chromium	S16-Fe27142		I LITERATED IN			36	30%	Fall	(316

Duplicate								
Heavy Metals				Result 1	Result 2	RPD		
Lead	S16-Fe27142	CP	mg/kg	78	77	1.0	30%	Pasa
Mercury	S16-Fe27142	CP	mg/kg	0.09	0.09	3.0	30%	Pasa
Nickel	S16-Fe27142	CP	mg/kg	7.4	8.9	19	30%	Pasa
Zinc	S16-Fe27142	CP	mg/kg	180	180	3.0	30%	Pass

Commente

Sample Integrity	
Custody Seela intact (If used)	N/A
Alternat to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoksingTime	Yes
Some sumples have been subcontracted	No

Qualifier	Codes/Comments
Code	Description
M10	NATA accreditation does not cover the performance of this service in soil matrices
N01	F2 is determined by arithmetically subtracting the "naphthetens" value from the ">C10-C16" value. The naphthetens value used in this calculation is obtained from valuation (Purge & Trap analysis).
N()2	Where we have reported both votatile (P&T GCMS) and semivolatile (GCMS) nephthelane data, results may not be identical. Provided correct earnije handling protocola have been libitowed, any observed differences in results are flagly to be due to procedural differences within each methodology. Results determined by both techniques have passed at QAQC exceptance orderie, and are entirely techniques valid.
NO4	F1 is determined by arithmetically autotracting the "Total BTEX" value from the "C8-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX enciyles. The "C8-C10" value is obtained by quantitating against a standard of mised aromaticalliphatic enailytes.
N07	Please note:- These two PAH isomers closely co-clute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-cluting PAHs
Q05	The matrix spike recovery is culaide of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference
Q15	The RPO reported passes Eurofins mgt's QC - Acceptance Offerie as defined in the internal Quality Control Review and Glossery page of this report.

Authorised By

Charl Du Presz	Analytical Services Manager
Bob Symone	Senior Analyst-Inorganic (NSW)
Emily Rosenberg	Senior Analysi-Metal (VIC)
Huang Le	Senior Analyst-Inorganic (VIC)
Iven Teylor	Senior Analyst-Metal (NSW)
Rhys Thomas	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volstile (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Exercises) and shall not be indeed for sport, cost, durangess or expenses instanced by the closer, or eary other powers including, but not families in, and profit, duranges for failure to read detailines and loss production who may be closer, or eary other powers including, but not failure to read detailines and loss production who may be compared to the production of the same and loss production are loss production and loss production are loss production.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, cellbrations and/or measurements included in this document are traceable to Australian/mitional standards.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Matthew Locke

Report

490931-AID

Project Name

ER04835AB

Received Date

Feb 29, 2016

Date Reported

Mar 08, 2016

Methodology:

Asbestos ID

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.

Subsampling Soil Samples

The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding 400 ± 30 °C. The resultant material is then ground and examined in accordance with AS 4964-2004.

Limit of Reporting

The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt NATA accreditation as designated by an asterisk.

Accredited for compliance with ISO/IEC 17028
The require of the best, calibrations and/or measurements included in the document are recoedly to Australian fractional descriptions

NATA Accredited Accreditation Number 1261 Sits Number 18217

ER04835AB Project Name

Date Sampled Project ID Report

Feb 25, 2016 490931-AID

Cilent Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
HA02/0.0-0.15	16-Fe27138	Feb 25, 2016	Approximate Sample 78g Sample consisted of: Brown fine grain soil and rocks	Chrysottle and crocidolite asbestos detacted in fibre cement fragments. Approximate raw weight of asbestos containing material = 0.0147g Organic fibre detacted. No respirable fibres detacted.
HA01/0.05-0.15	16-Fe27139	Feb 25, 2018	Feb 25, 2018 Approximate Sample 77g Sample consisted of: Brown fine grain soil and rocks	Chrysobile asbestos detected in weathered fibre cement fingments. Approximate raw weight of asbestos containing material = 0.0019g Organic fibre detected. No respirable fibres detected.
HA03/0.5-0.8	16-Fe27140	Feb 25, 2016	Approximate Semple 70g Sample consisted of: Brown fine grain soil and rocks	No aabertos detected. Organic fibre detected. No respirable fibres detected.
HA04/0.0-0.15	16-Fe27141	Feb 25, 2016	Feb 25, 2016 Approximate Sample 67g Semple consisted of: Brown fine grain soil and rocks	No aebertos detectad. Organic fibre detected. No respirable fibres detected.
HAD5/0.0-0.15	16Fe27142	Feb 25, 2016	Feb 25, 2016 Approximate Sample 64g Sample consisted of: Brown fine grain soil and rocks	No aabeartos detectad. Organic fibra detectad. No respirable fibres detectad.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing Site

Extracted

Holding Time

Sydney

Mar 07, 2016

Indefinite

Melbourne 8-5 Kingston Town Close Oudsigh VIC 3169 Pruns :+61 3 8664 5000 NATA # 1261 Sile # 1254 & 14271

Dydney Unit P3, Building F 16 Mars Road Lans Cove West NSW 2086 Phone : 401 2 9500 8400 NATA # 1261 88s # 16217

Brisbure 121 Brailwood Place Muzarie CLD 4172 Phone: +61 7 3902 4500 NATA# 1201 Slb# 20794

ABN - 50 005 085 521 a.mail : Envirobaios@surdfra.com.su web : www.sumdins.com.su

Order No.: Report #: Phone: Fex:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway

Company Name: Address:

ER04835AB Chatswood NSW 2067

Project Name:

Received: Due: Priority: Contact Name:

5 Day Martthew Locks

Feb 29, 2016 3:36 PM Mar 7, 2016

	_	_	_	_			_				_	_	_,			
BTEX and Volatile TRH			×				×	×								
Eurofine mgt Suite B4			×						×	×	×	×	×	×	×	×
Cation Exchange Capacity		×	×													×
Moisture Set			×						×	×	×	×	×	×	×	×
Organophoephorus Pesticides (OP)			×													×
Metals M8			×													×
Organochlorine Pesticides			×													×
Total Organic Carbon		×														×
pH (1:5 Aqueous extract)			×													×
Lead			×						×	×	×	×	×	×	×	
HOLD			×													
Asbestos Absence /Presence			X													×
						LAB ID	S16-Fe27128	S16-Fe27129	S16-Fe27131	S16-Fe27132	S16-Fe27133	S16-Fe27134	S16-Fe27135	S16-Fe27138	S16-Fe27137	S16-Fe27138
		27.1				Matrix	Soil	Soll	Soil	Soil	Soil	Soll	Sod	Soil	Soil	Soil
Sample Defail	nducted	th # 1254 & 14	\$ 18217	■ # 20794		Sampling										
	aboratory where analysis is conducted	elbourne Laboratory - NATA Sits \$ 1254 & 14271	ory - NATA Site	Brisbane Laboratory - NATA Site 6 20794	tory	Sample Date	Feb 25, 2018	Feb 25, 2018	Feb 25, 2018							
	Laboratory when	Melbourne Labo	Sydney Laboratory - NATA Site # 18217	Brisbane Labora	External Laboratory	Sample ID	TS 160225-17			BH01/3.5-3.7	BH01/0.4-0.5	BH02/0.5-0.8	BH02/3.3-3.5	BH03/0.05-0.2	BH03/1.9-2.0	HA02/0.0-0.15

Brisbuse 121 Smalwood Place Muzanie CLD 4172 Phrane: +61 7 3902 4600 NATA # 1201 5lib # 20794

Sydney
Linit F3, Building F
16 Mars Road Wat NSW 2006
Flums Cove West NSW 2006
Flums : 451 2,9000,0400
NATA # 1281 Shs # 16217

Methourne 3-5 Kingelon Town Close Outbight VIC 3169 Phone : +61 3 6564 5000 NATA if 1261 Site if 1261

ARN - 60 009 089 924 a.mail : Envirobalos@eurofra.com.au varb : wars.aurofna.com.au

490931

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 739 Pacific Highway

Company Name: Address:

ER04835AB

Project Name:

Chatswood NSW 2067

Received: Due: Priority: Contact Name:

Feb 29, 2016 3:36 PM Mar 7, 2016

5 Day Matthew Looks

	_	_	_	_	_			_			_	_		_	_	
BTEX and Volatile TRH	L		×	L	L											
Eurofine mgt Suite B4	L		×	L	L	×	×	×	×							
Cation Exchange Capacity		×	×	L	L	×										
Moisture Set			×		L	×	×	×	×							
Organophosphorus Pasticides (OP)			×	L	L	×	×	×	×							
Metals M8			×	L	L	×	×	×	×							
Organochlorine Pesticides	L		×	L	L	×	×	×	×							
Total Organic Carbon		×		L	L	×										
pH (1:5 Aqueous extract)			×	L		×										
Lead	L		×													
HOLD			×							×	×	×	×	×	×	×
Asbestos Absence /Presence			×			×	×	×	×							
						S16-Fe27139	S16-Fe27140	S16-Fe27141	\$16-Fe27142	S16-Fe27143	S16-Fe27144	S16-Fe27145	S16-Fe27148	S16-Fe27147	\$16-Fe27148	S16-Fe27149
Semple Detail	nducted	ts # 1254 & 14271	18217	\$ 20794		Sol	Soll	Soll	Soil	Soil	Soil	Soll	Soll	Soil	Soli	Sol
	aboratory where analysis is conducte	elbourne Leboratory - NATA Site \$ 1254	Sydney Leboratory - NATA 8ths # 18217	Brisbane Laboratory - NATA Site # 20794	oratory	Feb 25, 2018	Feb 26, 2018	5 Feb 25, 2018	5 Feb 25, 2018	2 Feb 25, 2016	Feb 25, 2016	Feb 25, 2018	Feb 25, 2018	Feb 25, 2016	Feb 25, 2018	BH02/0.05-0.2 Feb 25, 2018
	Laboratory w	Melbourne L	Sydney Labo	Brisbane Lat	External Laboratory	HA01/0.05- 0.15	HA03/0.5-0.8	HA04/0.0-0.15	HA05/0.0-0.15	BH01/0.05-0.2	BH01/2.4-2.5	BH01/6.3-5.5	BH01/6.8-6.0	BH01/0.9-1.0	BH01/1.8-2.0	BH02/0.06-0.

Bydney Unit P3, Building F 19 Mars Read Lans Cove West NGW 2006 Lans Cove West NGW 2006 Phone: 401 2 9000 9400 NATA # 1281 88s # 16217

Brisbase 121 Smallwood Place Muzarie QLD 4172 Phone: +61 7 3902 4800 NATA # 1201 Site # 20794

Melbourne 8-5 Kingston Town Class Ossbeigh VIC 8169 Physix - 141 3 8564 5000 NATA # 1261 Siss # 1284 & 14271

ABN - 50 005 086 521 a.mail : EnviroBalos@eurd*na.com.au redo : www.aurdina.com.au

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Company Name: Address:

ER04835AB

Project Name:

Feb 29, 2016 3:36 PM Mar 7, 2016 Priority: Contact Name: Due

Received:

5 Day Matthew Locks

	×	×					П	\neg			_	\neg	\neg	_	_
	×	×					- 1	ı					- 1		
	×						٦								\Box
		×													
		×													
		×													
		×													
		×													╛
	×													\Box	\Box
	L	×												╛	╝
		×													╛
	L	×			×	×	×	×	×	×	×	×	×	×	×
L	L	×													\perp
					S16-Fe27150	S18-Fe27151	S16-Fe27152	S16-Fe27153	S16-Fe27154	S16-Fe27155	S16-Fe27156	S16-Fe27157	S16-Fe27158	S16-Fe27159	S16-Fe27180
3	1254 & 14271	17	1784		Soll	Soll	Soll	Soil	Soli	Soll	Soll	Soll	Soll	Soll	Soil
contrary where analysis is conduc	bourne Leboratory - NATA Site #	Iney Laboratory - NATA Sits # 162		emai Laboratory	02/2.2-2.4 Feb 25, 2016	02/5.6-6.0 Feb 25, 2016						ш			HA02/0.6-0.9 Feb 25, 2016
	I a boratory where analysis is conducted	alysis is conducted	alysis is conducted y - NATA Sibs # 1254 & 14271 X X X X X X X X X X X X X X X X X X X	### site # 14271	Conducted A Site # 1254 & 14271 A Site # 20794 Site # 20794	Soli Soli Steep Soli Steep Soli Steep Soli Steep Soli Steep Steep Soli Steep St	MATA Site \$ 1254 & 14271 NATA Site \$ 1254 & 14271 X X X X X -NATA Site \$ 20794 X X X X X -5, 2016 Soil \$16-Fe27150 X X X 55, 2016 Soil \$16-Fe27151 X X X	Stite \$ 20794 Stite \$ 20794 Soil S16-Fe27150 X X X X X X X X X X X X X X X X X X X	Soli Ste-Fe27150 X X X X X X X X X	ere analysis is conducted contoxy - NATA Site # 1251 & 14271 X X X X X X X X X X X X X X X X X X X	ere analysis is conducted contory - NATA Site # 14271 X	ere analysis is conducted cortory - NATA Site # 1254 & 14271 X X X X X X X X X X X X X X X X X X X	ere analysis is conducted contory - NATA Site # 14271 X X X X X X X X X X X X X X X X X X X	ere analysis is conducted cortooy - NATA Site \$ 14271 X <th> Soli S16-Fe27150 X X X X X X X X X </th>	Soli S16-Fe27150 X X X X X X X X X

Melbourne 2-6 Krigaton Town Close Oddeligh VIC 2168 Prons - +61 3 9564 5000 NATA # 1261 Silo # 1264 & 14274

Brisbase 121 Smalwood Place Muranis QLD 4172 Phone : +61 7 3902 4800 NATA # 1201 Sila # 20794

Dydropy Unit PS, Building F 16 Mins Road Lans Core West NSW 2005 Phone : +61 2 9000 8400 NATA # 1281 She # 14227

APN - 50 005 088 521 a.mell : EnviroSalos@eurdins.com.au hab : www.aumfins.com.au

480831 Order No.: Report #: Phone: Fex:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 739 Pacific Highway

Company Name: Address:

ER04835AB Chatewood NSW 2067

Project Name:

Received: Due: Priority: Contact Name:

Feb 29, 2016 3:36 PM Mar 7, 2016

5 Day Matthew Locks

internal Quality Control Review and Glossary

- 1. QC data may be available on request.
- 2. All soil requite are reported on a dry banks, unless otherwise shalled.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Pieces refer to 'Sample Preservation and Container Guide' for holding times (Q63001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Repelot Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrily issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be cutaide the laboratory's control.

% who: weight for weight basis

omme per kilogram fibres/100 graticule areas

Filter loading: Reported Concentration:

fibree/mL

L/min

Flournie:

Terms

Dry

Where a moisture has been determined on a solid sample the result is expressed on a dry banis.

LOR COC Limit of Reporting. Chain of custody Sample Receipt Advice

SRA

DBO.

International Standards Organisation

WA DOH

Austrellen Standerde Western Australia Department of Health

NOHEC

ACN

National Occupational Health and Safety Commission

Bonded asbestoe-containing material means any material containing more than 1% subestoe and comprises asbestoe-containing-material which is in sound condition. although possibly broken or fregmented, and where the subsetos is bound in a matrix such as coment or resin. Common examples of ACM Indude but are not limited to: pipe and botter installation, spreyed-on the proofing, translation ecountism plants; floor tills and mustic, floor lincieurs, transits stringles, roofing materials, well and colling pleaser, calling tiles, and gestet meterials. This term is restricted to meterial that cannot pass a 7 mm x 7 mm slove. This allove size is selected because it approximates the thickness of common asbestos cament sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre relea

FA

FA comprises friable exhautos material and includes severely weathered coment sheet, insulation products and woven ashestos material. This type of Mable subsets is defined here as asbeatos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unborded or

was previously bonded and is now significantly degraded (crumbling).

PACH

Presumed Assestos-Containing Meterial means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later then 1980 that are assumed to contain greater than one percent asbeatos but have not been earnfied or enabled to verify or negate the presence of subsetos.

Asberice lines (AF) are defined as tree libres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very Asbestos fines (AF) are defined as tree fibres, or fibre bundles, smaller than a real manuscript enter of bonded ACM that pass through a 7 mm x 7 mm stave.

And the bonded ACM that pass through a 7 mm x 7 mm allows implies a substatrifial degree of damage which increases the potential for fibre release.)

AC

Asbestos coment means & iniciture of coment and asbestos flores (typically 90:10 ratios).

Commente

The samples received were not collected in approved sabestos begs and were therefore sub-sampled from the 250mL glass jars. Valid sub-sampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity

Contribute minel 119	
Cuntody Besie Intack (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile energies received with minimal headepace	Yes
Sumples received within Holding Time	Yes
Some camples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N/A	Not applicable

Authorised by:

Ritrya Thomas

Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously leaved Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Examples) ong shall mer his highs for issue, most, distringues or expenses becamed by the client, or may other postures or exceptions, but not included to the state of the client of the control of the

CERTIFICATE OF ANALYSIS

:10f4	: Environmental Division Sydney	: Angelene Kumar	: 277-289 Woodpark Road Smithfield NSW Australia 2164		: angelene.kumar@alsglobal.com	: +61 2 8784 8555	+61-2-8784 8500	NEPM 2013 B3 & ALS QC Standard	: 01-Mar-2016 14:50	: 03-Mar-2016	: 08-Mar-2016 18:35			The state of the s
Page	Laboratory	Contact	Address		E-mail	Telephone	Facsimile	QC Level	Data Samples Received	Date Analysis Commenced	Issue Date		No. of samples received	No. of samples analysed
: ES1604693	: COFFEY ENVIRONMENTS PTY LTD	: MR MATTHEW LOCKE	: 8/12 MARS ROAD	LANE COVE WEST NSW, AUSTRALIA 2066	: matthew locke@coffey.com	: +61 02 9911 1000	: +61 +61 9911 1001	: ER04836AB	: 07705	: 07705	: PRESTON ALMA			<u>!</u>
Work Order	Cllent	Contact	Address		E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

153	5	
NATA Accredited Leboratory 828	Accredited for compliance wit	ISO/IEC 17025.

Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing is certied out in compliance with procedures specified in 21 CFR Part 11.	signed by recified in 21 CF	TR Par	uthorized t 11.	signatories	Indicated	below.	Electronic	signing	_
Signatories	Position				Accred	Accreditation Lategory	regory		- 11 -
Celine Conceicao	Senior Spectroscopiet	troscot	¥		Sydne	y Inorga	Sydney Inorganics, Smithfield, NSW	leid, NSW	_
Pabi Subbe	Senior Organic Chemist	퉏	Hist.		Sydn	y horge	Sydney Inorganica, Smithfield, NSW	ield, NSW	_
Pabl Subba	Senior Organic Chemist	동CF	erntet		Sydne	y Organ	Sydney Organics, Smithfield, NSW	A. NSW	

has been

COFFEY ENVIRONMENTS PTY LTD ER04836AB ES1604693 Page Work Order Project Client

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight beats.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Where the LOR of a reported result differs from alenderd LOR, this may be due to high moisture content, insufficient semple (reduced weight employed) or matrix interference.

CAS Number = CAS registry number from detebase maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. .. 5

LOR = Limit of reporting

This result is computed from individual analyte detections at or above the lavel of reporting

a = ALS is not NATA accredited for these tests.

EQUOST: Poor precision was obtained for Lead on sample and ES1604579 #001 due to sample hotsrogeneity. 0

Benzo(a)pyrane Toddty Equivalent Quotient (TEQ) is the aum fole of the concentration of the eight carchogenic PAHs multiplied by their Toddty Equivalence Fector (TEF) relative to Benzo(a)pyrane. TEF values Benzo(g.h.) perylans (0.01). Less than LOR results for TEQ Zero' are trested as zero, for TEQ 1/2LOR's are trested as half the reported LOR, and for TEQ LOR are trested as being equal to the reported LOR. are provided in brackets as follows: Benz(a)anthracens (0.1), Chrysens (0.01), Benzo(b-t) & Benzo(b)flucranthens (0.1), Benzo(a)pyrens (1.0), Indexo(1.2.3.cd)pyrens (0.1), Dibenz(a,h)enthracens (1.0), Note: TEQ 1/21.0R and TEQ LOR will calculate as 0.5mg/Kg and 1.2mg/Kg raspectively for samples with non-detects for all of the eight TEQ PANs.

Analytical Results Page Work Order Client Project

: 3 of 4 : ES1604683 : COFFEY ENVIRONMENTS PTY LTD : ER04836AB

Sub-Martix: BOL.	0	Client sample ID	PNP1-A	I	I	I	Ì
	Cllent samy	Client sampling date / time	[26-Feb-2016]	ı	Ĩ	1	Ī
Compound CAS Number	907 16	Unit	E91604683-001				
			Partit	Reaut	Result	Result	Result
EAD55: Moisture Content			THE PARTY OF THE P				
103°C)	- I	*	6.8	1	1		1
EG005T: Total Metals by ICP-AES							
Lead 7438-92-1	- -	mg/kg	10	1		1	1
EP075(SIM)B: Polynuclear Arometic Hydrocarbons							
Naphthalena 91-20-3	-3 0.5	Вуу	<0.5	ı	I	I	I
Acenephthylene 208-98-8	9.0	mg/kg	40.6	1		I	1
Agenaphthene 83-32-9	9.0	mpAq	€0.5	1	1	1	1
Fluorene 86-73-7	-7 0.5	Dybu	40.5	1		ľ	1
Phenanthrana 65-01-8	9.0	рубш	40.6				1
Anthracene 120-12-7	-7	DA/OL	40.5	I	I		1
Fluoranthana 208-44-0	9.0	вувш	40.5			ı	1
Pyrene 129-00-0	9.0	Вувш	40.5	1	1	1	L
Benz(a)anthracene 56-55-3	3.0.5	фф	40.5	1		Ĺ	1
Chrysene 218-01-9	9.0	gayaw	40.5				
Benzo(b+j)/iluoranthene 205-92-2 205-82-3	3.0.5	mg/kg	40.5		-		1
Benzo(k)fluoranthene 207-08-9	-9 0.6	mg/kg	40.5	1			1
Benzo(a)pyrene 50-32-8	9.0	mg/kg	40.5				1
Indeno(1.2.3.od)pyrene 193-39-5	6.0	mg/kg	40.5	-			1
Dibenz(n.h)enthracene 53-70-3	970	mg/kg	40.5	-		0,—0	1
Benzo(g.h.l)perylens 191-24-2	-2 0.5	mg/kg	40.5		1		ı
A Sum of polycyclic aromatic hydrocarbona	0.6	mg/kg	40.5	1		1	1
A Beruzo(a)pyrene TEQ (zero)	0.6	mg/kg	40.6	_			1
A Benzo(s)pyrene TEQ (half LOR)	0.6	mg/kg	9.6	-	1		1
A Benzo(a)pyrene TEQ (LOR)	0.5	mgAkg	1.2	1	1		I
EP080/071: Total Petroleum Hydrocarbons							
	- 6	mg/kg	db	1	ı		1
C10 - C14 Fraction	28	шдуб	99>	ı	1	ı	1
C15 - C29 Fraction	ا 8	рубш	4100	1	ı		i
C29 - C38 Fraction	5	Бубш	<100	1	1	ı	ı
^ C10 - C38 Fraction (sum)	8	теле	· \$00	1	1	1	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	2013 Fract	ons					
C6-C18 Fraction C8_C10	10	Dybu	c10	1	1	1	1
A C6 - C10 Fraction minus BTEX C8_C10-BTEX	운	mg/kg	<10	I	ı	I	f
£3	_						

: 4 of 4 : E31604683 : COFFEY ENVIRONMENTS PTY LTD : ER04836AB Page Work Order Client Project

Analytical Results

Sub-Metrix: BOL (Metrix: SOL)		ঠ	Client semple ID	P-F-IO	Į		l	1	
	ਠੱ	llent sampli	Client sempling date / time	[26-Feb-2016]	1	Ī	1	1	
Compound	CAS Number	HO.	Unit	E81604683-001			1	-	T
			1	Passill	Result	Result	Result	Result	T
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Contin	carbons - NEPM 201	3 Fraction	18 - Continued		THE PERSON NAMED IN				
>C10 - C16 Fraction	J	8		99	1	ı		1	Г
×C18 - C34 Fraction	I	9	mg/kg	<100	I	I	ı	1	T
>C34 - C40 Fraction	I	<u>\$</u>	mg/kg	×100	ı		1	1	T
^ >C10 - C40 Fraction (sum)	I	28	толе	99	ı	1	ı	1	T
A >C10 - C16 Fraction minus Nephthalene (F2)	1	28	теме	09>	I	I	ı	I	
EP080: BTEXN			THE PARTY	THE STATE OF THE S		TOTAL PROPERTY.			T
Benzene	71-43-2	0.2	тома	40.2	1		1	1	ſ
Toluese	108-88-3	9.0	шдура	40.5	1	I	•	1	Т
Eftyfbenzane	100-41-4	0.5	ффш	40.5	1	I	SANG.	1	Т
meta- & para-Aylena	108-38-3 108-42-3	0.5	mgAg	40.5	1	I	1	1	T
ortho-Xylene	96-47-8	9.0	mg/kg	40.5	1	ı	I	1	T
A Sum of BTEX	I	0.2	mg/kg	40.2	ı	J	1	1	Т
^ Total Xylenes	1330-20-7	9.0	mg/kg	€0.5	1	1	I		T
Naphthalene	91-20-3	-	трле	V	1	1	Ĩ	I	T
EP075(SIM)S: Phenolic Compound Surrogates					THE REAL PROPERTY.				T
Phenol-dd	13127-86-3	0.5	×	80.9	ı	1	I	ı	
2-Chlorophanol-D4	99951-73-6	9.0	*	120	1	1	1	1	Т
2.4.6-Tribromophenol	118-79-6	9.6	×	67.3	1	ı	1	1	Г
EP075(SIM)T: PAH Surrogates				PART SAME	MANAGE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLU	THE STATE OF THE PARTY OF THE P			Т
2-Fluorobiphenyl	321-60-8	9.0	**	56.3	I		I	1	T
Anthracens-d10	1719-08-8	9.0	×2	121	1	1	1		T
4-Terphanyl-d14	1718-51-0	0.5	zę.	6.00	1	1	1	1	T
EP080S: TPH(V)/BTEX Surrogates			NAME AND PARTY.						Г
1.2-Dichloroefhane-D4	17060-07-0	0.2	æ	424	1	1	1		
Tolunna-D8	2037-28-5	0.2	¥	417	ı	ľ	I	Ì	T
4-Bromofluorobenzene	400-004	0.2	3º	4	1	1	1	ı	T

QUALITY CONTROL REPORT

: 1 of 8	: Environmental Division Sydney	: Angelene Kumer	: 277-289 Woodpark Road Smithfield NSW Australia 2164		: angelene.kumar@alagiobal.com	: +61 2 6784 8555	: +61-2-8784 8500	: NEPM 2013 B3 & ALS QC Standard	: 01-Mar-2016	: 03-Mar-2016	: 08-Mar-2016		T.
Page	Laboratory	Confact	Address		E-mail	Telephone	Facsimile	QC Level	Date Samples Received	Date Analysis Commenced	Issue Date	No. of samples received	No. of samples analysed
: ES1604683	COFFEY ENVIRONMENTS PTY LTD	: MR MATTHEW LOCKE	: 8/12 MARS ROAD	LANE COVE WEST NSW, AUSTRALIA 2066	: matthew.locke@coffey.com	: +61 02 9911 1000	: +61 +61 9911 1001	: ER04835AB	: 07705	: 07705	PRESTON ALMA		1
Work Order	Cilent	Contact	Address		E-mail	Telephone	Fecsimile	Project	Order number	C-O-C number	Sampler	Site	Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

compliance with ISO/IEC 17026. Accredited for

NATA Accredited Leboratory 825

Signafories
This document has been electronically algned by the authorized signatories indicated below. Electronic algning has been carried out compliance with procedures specified in 21 CFR Part 11.

_

Signatories	Position	Accreditation Category
Celine Concelcao	Senior Spectroacopiat	Sydney Inorganica, Smithfield, NSW
· Pabl Subbe	Senior Organic Chemist	Sydney Inorganics, Smithfield, NSW
Pabl Subba	Servior Organic Chemist	Sydney Organics, Smithfield, NSW

: 2 of 8 : ES1604963 : COFFEY ENVIRONMENTS PTY LTD ERD4835AB Page Work Order Project Client

General Comments

The energical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for enalysis. Where the LOR of a reported result differs from standard LOR, this may be due to high <u>\$</u>

Anonymous = Refere to eamples which are not specifically part of this work order but formed part of the QC process lot.
CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Ralative Percentage Difference

= Indicates falled QC

Page : 3 of 8

Work Order : ES1604663
Client : COFFEY ENVIRONMENTS PTY LTD
Project : ER04835A8

Laboratory Duplicate (DUP) Report

Sub-Matrix: #OIL						CANAGE A	Laboratory Duparents (DULY) respont		
Laboratory sample ID C	Client sample ID	Method: Compound	CAS Number	TOR	Unit	Original Rescut	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Molsture Content (QC Lot: 384286)	nt (QC Lot: 384286)								
ES1604660-007	Anonymous	EADSS-103: Moieture Content (dried @ 103°C)	I.	-	%	18.3	18.1	1.10	969 - 90
E81604670-002	Anonymous	EA056-103; Moieture Content (dried @ 103°C)	I	-	×	6.0	4.9	19.2	No Limit
EG005T: Total Metals by	tals by ICP-AES (QC Lot: 383569)								
ES1804579-001	Anonymous	EGOODT: Lead	7439-92-1	קט	mg/kg	114	06#	23.9	0% - 20%
ES1804758-005 A	Anonymous	EG005T: Lead	7439-92-1	up.	Dy/ou	12	21	53.6	No Limit
EP075(SIM)B: Polynuck	EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 382159)	ons (QC Lot: 382158)	STATE OF THE STATE						
ES1804631-006 A	Anonymous	EP076(SIM): Agenephthene	83-32-6	0.5	рубш	€0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-86-8	0.5	ONO.	Q .5	Q.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	Вубш	40,5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracena	58-55-3	0.5	mg/kg	40.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	40.5	40.5	000	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		9.0	mg/kg	<0.5	€0.5	0.00	No Limit
		EP075(SIM): Benzo(b+l)/fluoranthene	205-99-2	5.0	шола	9,0	905	0.00	No Limit
		EP075(SIM): Benzo(g.h.l)perylene	191-24-2	0.5	Dyou.	40.5	Q .5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	970	Фубш	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	970	mg/kg	0,0	<0.5	0.00	No Limit
		EP075(SIM): Diberz(a.h)anthracena	53-70-3	9.0	Dy o w	40.5	40.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	ву/вш	40.5	<0.5	0.00	No Limit
		EP075(SIM); Fluorene	88-73-7	0.5	mg/kg	€.0>	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrana	193-39-5	0.5	Вудш	6.5	40.5	0.00	No Limit
		EP075(SIM); Naphthelene	81-20-3	0.5	Фубш	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrane	82-01-8	0.5	mg/kg	40.5	Q.5	0.00	No Limit
		EP075(9IM): Pyrene	128-00-0	0.5	mørkg	40.5	40.5	0.00	No Limit
		EP075(SIM); Sum of polycyclic aromatic hydrogenbors	l	0.5	Фудш	<0.5	<0.5	0.00	No Limit
ES1804631-001	Anonymous	EP075(SIMx Acenanithene	83-32-8	0.5	Byou	40.5	€0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	Вубш	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	Q .5	€0.5	000	No Limit
		EP075(SIM): Benz(a)anthracene	59-66-3	9.6	₽/⁄∂ш	9'0	9'0>	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	9.0	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)	1	9.0	mg/lig	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-89-2	9.0	Dyðu.	⊕ .5	40.5 5.	0.00	No Limit
		EP075(SIM); Benzo(g.h.l)perylene	191-24-2	9.0	Бубш	90.6	40.5	0.00	No Limit
		Illimited developing and evaluate and evaluation of the developing and evaluation in the second and evaluation of the second and eva			and the	Ç	1	1000	March 1 and

COFFEY ENVIRONMENTS PTY LTD

ER04835AB

Client

4 of 8 ES1604693

Work Order

Recovery Limits (%) No Link No Limit No Limit NoLIME No Limit No Chart No Limit No Link SCIE No Limit No Limit RPD (%) 0.00 8 0.00 0.00 0.00 900 0.00 0.00 0.00 90 90.0 0.00 0.00 8 Leboratory Dupiticate (DUP) Report Original Result Duplicate Result 0.6 40.5 6.5 <0.5 6.5 6,5 유 양 양 8 8 9 8 5 <0.2 0.5 60.5 0.0 6.5 용 운무 8 유유 8 8 V 9.0 8.5 60.5 6.6 \$ \$ \$ 4100 100 \$ 00 V 0,5 60.0 6.5 40.5 8.5 8 6.5 우우 \$ 8 운양 97 6.5 ₽ 8 Di/Du D)OH mg/kg Byou mg/kg Dy6m mg/kg mg/lg mo/kg mg/kg mg/lg Dybu Dybu mg/kg вубш mg/lgi g/gm mg/kg mg/gm mg/kg аубш Dyou moye mg/kg DIOL Unit **WO7** 0.5 0.5 9 9 0.5 0.5 우 무 5 5 B 우 우 9 6 6 8 8 2 -C6_C10 53-70-3 208-44-0 11111 1 1 71-43-2 CAS Number 91-20-3 88-73-7 183-38-5 91-20-3 85-01-B 128-00-0 G6_C10 71432 100414 108-38-3 108-42-3 85-47-8 108-88-3 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 383407) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 382168)
E81804831-008 Anonymous E9071: >C16 - C34 Fraction EP076(SIM): Sum of polycyclic promatic EP075(SIM): Indeno(1.2.3.od)pyrane EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 382159) - continued EP075(SIM): Dibenz(a.h)smthracena EP071: >C18 - C34 Fredion EP071: >C34 - C40 Fraction EP080: meter-& pera-Xylene EP071: >C34 - C40 Fraction EP071: >C10 - C18 Fraction EP075(SIM): Phonanthrane EP071; >C10 - C16 Fraction EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction EP071: C29 - C38 Fraction EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction EPO71: C29 - C38 Fraction EP075(SIM): Fluoranthene EP075(SIM): Naphthelene EP080: C6 - C10 Fraction EP080; C8 - C10 Fraction EP080: C8 - C9 Fraction EPOBD: C6 - C9 Fraction EP075(SIM): Chrysene hydrocarbona EP075(SIM): Fluorene EP080: Ethylbenzene EP075(SIM): Pyrene EP080: Naphthalana EP080: ortho-Xylene EPOBO: Benziene EP080: Benzana EPO80: Tolugne EP080/071: Total Petroleum Hydrocarbons (QC Lot: 382159) (GC Lot: 383407) EP080/071: Total Petroleum Hydrocarbons Cilent sample ID Amenymous Anonymous AMOUNTMOUS Anonymous Amonymous EP080: BTEXN (QC Lot: 383407) ES1604876-001 Anonymous Anonymous Amonymous Anonymous Anonymous Anonymous Laboratory sample ID ES1804831-001 ES1804631-008 E91604876-006 E81804875-006 ES1604876-001 ES1604876-001 ES1604876-006 Sub-Matrix: SOIL E61604631-001 ES1604631-001

Page Work Order

Project Cient

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit RPD (%) 000 0.00 Leboratory Duplicate (DUP) Report Original Result Duplicate Result å å <u>↑</u> 8.6 8.6 유 승 소 mg/gm mg/gm mg/gm Sept **207** 9 0 2.00 108-42-3 95-47-6 108-88-3 91-20-3 100-41-4 108-38-3 CAS Number EP080: Ethylberzens EP080: mete- & pera-Xylens EP080: ortho-Xylene EP080: Toluene EP080: Nephthelene Method: Con : 6 of 8 : ES1604683 : COFFEY ENVIRONMENTS PTY LTD : ER0483548 EP080: BTEXN (QC Lot: 383407) - confinued E91804878-008 Anonymous Sub-Matrix: BOIL

Page : 6 of 8
Work Order : ES1604683
Client : COFFEY ENVIRONMENTS PTY LTD
Project : ER04835A8
Method Blank (MB) and Laboratory Control Spike (LCS) Report

Sub-Matrix: SOIL				Method Stent (MB)		Laboratory Control Spilits (LCS) Report	CS) Report	
				Report	Spilte	Spilite Recovery (%)	Recovery	Recovery Limits (%)
Method: Compound	CAS Number	707	Unit	Feech	Concentration	\$ 57	Low	Magh
EG005T: Total Metals by ICP-AES (QCLot: 383569)	<u> </u>							
EG005T: Leed	7439-82-1	uò	mg/kg	\$	40 mg/kg	91.2	8	114
EP075(SIM)B: Polynuciear Aromatic Hydrocarbons (QCLot: 382159)	ns (QCLot: 382159)	THE STATE						
EP075(SIM): Acenephthene	83-32-9	0.5	mg/kg	€.5	6 mg/lig	109	R	127
EP075(SIM): Aoenaphthylene	208-86-8	9.0	By/du	<0.5	8 mg/kg	102	22	121
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	€0.5	6 mg/kg	113	11	127
EP075(SIM): Benz(a)anthracene	6-99-99	0.5	gyligin	<0.5	в тр/в	0.99	8	123
EP075(SIM): Banzo(a)pyrena	60-32-8	9.0	mg/kg	<0.5	6 mg/kg	5	2	128
EP075(SIM): Benzo(b+f)fluoranthene	206-88-2	0.5	фф	₹ 0.5	6 m g/kg	85.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	8	118
EP075(SiM): Benzo(g.h.l)perylene	191-24-2	9.0	By/bu	40.5	в така	78.0	28	121
EP075(SIM): Benzo(k)fluoranthane	207-08-9	970	mg/kg	<0.5	6 mg/kg	\$	74	128
EP076(SIM): Chrysone	218-01-9	0.5	mg/kg	<0.5	8 mg/kg	501	75	127
EP075(SIM): Dibenz(a.h)anihnacana	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	96.2	2	118
EP075(SIM): Fluoranthene	206-44-0	0.5	теука	40.5	6 mg/kg	111	57	127
EP075(SIM): Fluorene	08-73-7	0.5	Dy/du	A0.5	8 mg/kg	108	2	126
EP075(SIM): Indena(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	40.5	6 тр/ка	61.4	61	121
EP075(SIM): Naphthalene	61-20-3	0.5	поле	9.0	6 mg/kg	101	11	125
EP075(SIM): Phenenthrene	85-01-8	9.0	mg/kg	₽	6 mg/kg	108	76	127
EP075(SIM): Pyrane	128-00-0	0.5	mg/kg	3.	6 mg/kg	113	7.	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 382158)	.ot: 382158)							
EP071: C10 - C14 Fraction		20	mg/kg	0\$>	200 mg/kg	115	76	129
EP071: C15 - C28 Fraction	i	100	mg/kg	<100 -100	300 mg/kg	22	71	131
EP071: C28 - C36 Fraction	1	100	теле	<100	200 mg/kg	110	7.1	129
EP080/071: Total Petroleum Hydrocarbone (QCLot: 383407)	.ot: 383407)							
EP080: C6 - C9 Fraction	ı	10	mg/kg	<10	28 mg/kg	94.4	88	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLo)	EPM 2013 Fractions (QCLo	8						
EP071: >C10 - C16 Fraction	1		mg/kg	0\$>	250 mg/kg	115	11	125
EP071: >C16 - C34 Fraction	1	100	mg/kg	<100	360 mg/kg	超	7.4	136
EP071: >C34 - C40 Fraction	i	100	mg/kg	<100	150 mg/kg	96.5	8	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLo)	EPM 2013 Fractions (QCLo	£: 383407)						
EP080: C8 - C10 Fraction	CB C10	10	mg/kg	<10	31 mg/kg	93.7	98	128
EP080: BTEXN (QCLot: 383407)								
EP080: Benzene	71-43-2	0.2	mg/kg	40.2	1 mg/kg	87.2	8	118

198 120 120 121 Recovery Limits (%) 8 286 Laboratory Control Spiles (LCS) Report Spille Recovery (%) 80,2 98 88 4.7 57 mg/kg 1 mg/kg 2 mg/kg Spaffe Method Blenk (MB) Report €.0 \$.6 8.5 ۲ DYSE DYSE BY Aug. 0.5 108 0.5 CAS Number 106-42-3 91-20-3 95-47-6 108-38-3 106-86-3 EP080: BTEXN (QCLot: 383407) - continued EP080: meta- & para-Xylene EP080: ortho-Xylene EP080: Toluene EP080: Naphthalena Sub-Matrix: SOIL

: 7 of 8 : ES1604603 : COFFEY ENVIRONMENTS PTY LTD : ER048154B

Page Work Order Client

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory spilt sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects Metric Spiles (MS) Report analyte recoveries. Static Recovery Limita as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference. Sub-Matrix: SOIL

5

			Spules	SpikeRecovery(%)	Recovery Limits (%)	Imits (%)
Laboratory sample ID Cifert sample ID	Method, Compound	CAS Manther	Concentration	MS	TOW	High
EG005T: Total Metals by ICP-AES (QCLot: 383589)						
ES1604579-002 Anonymous	EG005T: Lead	7439-62-1	250 mg/kg	2.3	70	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 362159)	382159)					
ES1604631-001 Anonymous	EP075(SIM): Acenaphthene	63-32-9	10 mg/kg	97.1	92	130
	EP075(SIM): Pyrene	129-00-0	10 mg/kg	115	02	130
EP080/071: Total Petroleum Hydrocarbons (QCLot: 382158)						
E91604631-001 Anonymous	EP071: C10 - C14 Fraction	t	523 mg/kg	96.3	73	137
51	EP071: C15 - C28 Frection	ŀ	2319 mg/kg	\$	53	131
	EP071: C29 - C36 Fraction	1	1714 mg/kg	121	25	132
EP080/071: Total Petroleum Hydrocarbons (QCLot: 383407)						
ES1604878-001 Anonymous	EP080: C6 - C9 Fraction	1	32.5 mg/kg	128	6	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (GCI	ractions (QCLot: 382158)					
ES1604631-001 Anonymous	EP071: >C10 - C18 Fraction	1	880 mg/kg	93.6	278	137
	EP071; >C18 - C34 Fraction		3223 mg/kg	112	23	131
	EP071; >C34 - C40 Fredion	1	1058 mg/lig	114	62	132
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ractions (QCLot: 363407)					
ES1604878-001 Anonymous	EP080; C8 - C10 Fraction	CB_C10	37.5 mg/kg	122	02	130
EP080: BTEXN (QCLot: 383407)						
ES1604676-001 Anonymous	EP080: Benzene	7143-2	2.5 mg/kg	- 50+	20	130
	EP080: Ethylbenzane	100-41-4	2.5 mg/kg	105	0,	130
	EP060: meta- & para-Xylene	108-38-3 108-42-3	2.5 тола	11	20	130
	EP080; Naphthalene	91-20-3	2.5 mg/kg	116	70	130
	EP080: ortho-Xylene	95-47-5	2.5 mg/kg	112	22	130

: 8 of 8 : ES1604693 : COFFEY ENVIRONMENTS FTY LTD : ERM835AB Page Work Order Client Project

			4	Metric Splice (MS) Report		
			Spiles	SpikeRecovery(%)	Recovery Linits (%	metter (%)
tmple ID CBsm sample ID	Method: Compound	CAS Number	CAS Number Concentration	MS	Low	High
XN (QCLot: 383497) - continued						
04878-001 Anonymous	EPOSD: Tolusna	108-88-3	2.6 marka	102	202	130

Chain of Custody

coffey 🍑

Laboratory Quotation / Order No:

491532

No: 07709

JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES Sample Condition on Receipt Date: JOB NO: ENAURIOD OF STAR Analyses Required भवाव Consignment Note No: Date Dispatched: Courier Service: P-22 HAT 48 37102 50 115 84 1020 9141 SHVO Project Manager: M. Locke 23 16 Received by M. Locke Date Sampled 5 3 3 1 5 ک 2 3 16 AW 15160301-2 Turnaround Required: Sample No. Sampled by: RESI MW02 DUPI Liquid 1x Halper Zevind plante MWO! 1 - Amber 250 Intruder Zigen Container Type and Preservative Gample Kecerpt المدديم 1> vial Dispatch to: Eurofind MLT.
Address & Prone No.) letter. 5 S Sample Matrix 5 the All plants filtered in the ted * plantic presenced with Special Laboratory Instructions: M. Locke Comments Detection Limits: Relinquished by: Attention:

Copient: WHITE: Sign on release. YELLOW: If dispatiched to interstate Lab, Lab to sign on receipt and fax back to Coffey. BLUE: To be returned with maufits

ABN - 50 005 055 521 e.mail : EnviroSales@eurofins.com.au

wash: www.aumfine.com.au

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Matthew Locke

Project name:

ENAURHOD04835AB

COC number:

Not provided

Turn around time:

5 Day

Date/Time received:

Mar 3, 2016 2:18 PM

Eurofins | mgt reference:

491532

Sample information

- Z A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Ø Sample Receipt: 4.6 degrees Celsius.
- Ø All samples have been received as described on the above COC.
- 7 COC has been completed correctly.
- Ø Attempt to chill was evident.
- Ø Appropriately preserved sample containers have been used.
- 7 All samples were received in good condition.
- Ø Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Ø Appropriate sample containers have been used.
- 7 Sample containers for volatile analysis received with zero headspace.
- X Some samples have been subcontracted.
- Custody Seals intact (if used).

Notes

Vials not received for RB1. Subsampled from amberl

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone: +61 (2) 9900 8400 or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Matthew Locke - Matthew Locke@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Air Analysis Water Analysis Soil Contamination Analysis

Certificate of Analysis

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatawood NSW 2067

NATA Accredited Accreditation Number 1281 Site Number 12217

Accredited for compliance with ISO/IEC 17025.
The results of the tests, calibrations end/or measurements included in this document are traceable to Auditoria distance.

Attention:

Matthew Locks

Report

481532-W

Project name

ENAURHOD04835AB

Received Date

Mar 03, 2018

Cilent Sample ID			MW01	MW02	MW03	RB1
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			916-Ma03691	816-Ma03692	816-Ma03693	S16-Ma03694
Date Sampled			Mar 82, 2016	Mar 02, 2016	Mar 02, 2016	Mar 02, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	~~				
TRH C8-C9	0.02	mg/L	2.1	0.39	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	0.08	< 0.05	< 0.05	< 0.06
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C38	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-38 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX	_					
Benzene	0.001	mg/L	0.15	0.027	< 0.001	< 0.001
Toluene	0.001	mg/L	0.52	0.084	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	0.11	0.018	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	0.33	0.053	< 0.002	< 0.002
o-Xylene	0.001	mg/L	0.22	0.039	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	0.56	0.092	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	90	82	89	104
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C8-C10	0.02	mg/L	2.7	0.51	< 0.02	< 0.02
TRH C8-C10 less BTEX (F1)N94	0.02	mg/L	1.4	0.29	< 0.02	< 0.02
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	0.08	< 0.05	< 0.05	< 0.05
Polycyclic Aromatic Hydrocarbons						
Acenaphthena	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluorenthene ^{ko?}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g_h_i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
ndeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ругеле	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Semple ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference Polycyclic Aromatic Hydrocarbons	LOR	Unit	MW01 Water 816-Me03601 Mer 02, 2016	MW02 Water 316-Ma03692 Mar 02, 2016	MW03 Water 816-Me03693 Mar 02, 2016	RB1 Water 816-Ma03694 Mar 92, 2016
2-Fluorobiphenyl (surr.)	1	96	64	84	80	70
p-Terphenyl-d14 (surr.)	1	%	71	111	104	99
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
TRH >C10-C18	0.05	mg/L	80.0	< 0.06	< 0.05	< 0.05
TRH >C18-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Herry Metale						
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	#:

Client Sample ID			DUP1	тв	T8160301-2
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			516-Ma03895	S16-Ma03696	\$16-Ma03697
Date Sempled			Mar 92, 2016	Mar 02, 2016	Mar 02, 2016
Test/Reference	LOR	Unit			
TRH C6-C10 less BTEX (F1) ^{W4}	0.02	mg/L	-	< 0.02	-
Total Recoverable Hydrocarbons - 1999 NEPN	I Fractions			<u> </u>	
TRH C8-C9	0.02	mg/L	0.39	< 0.02	85%
TRH C10-C14	0.05	mg/L	< 0.05		-
TRH C15-C28	0.1	mg/L	< 0.1	-	
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	
BTEX					
Benzene	0.001	mg/L	0.026	< 0.001	103%
Toluene	0.001	mg/L	0.088	< 0.001	87%
Ethylbenzene	0.001	mg/L	0.017	< 0.001	98%
m&p-Xylenes	0.002	mg/L	0.050	< 0.002	110%
o-Xylene	0.001	mg/L	0.039	< 0.001	104%
Xylenes - Total	0.003	mg/L	0.089	< 0.003	108%
4-Bromofluorobenzene (surr.)	1	96	90	78	92
Total Recoverable Hydrocarbons - 2013 NEPN	Fractions				
TRH C8-C10	0.02	mg/L	::	< 0.02	101%
Volatile Organics	*/				
Naphthalene ^{No2}	0.01	mg/L	7.0	< 0.01	93%
Total Recoverable Hydrocarbons - 2013 NEPN		1		1	
Nanhthalens ^{M2}	0.01	me/L	< 0.01	-	
TRH C6-C10	0.02	ma/L	0.50	-	
TRH C8-C10 less BTEX (F1) less	0.02	mg/L	0.28		
TRH >C10-C16 less Naphthalens (F2)NR1	0.05	mg/L	< 0.05	_	
Polycyciic Aromatic Hydrocarbons	1				
Acenaphthene	0.001	mg/L	< 0.001	2	<u> </u>
Acenaphthylene	0.001	mg/L	< 0.001	-	ш.
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001		-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&i)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	_	I

Client Semple ID Sample Matrix			DUP1 Water	TB Water	TS160301-2 Water
Eurofins mgt Sample No.			816-Ma03695	316-Ma03696	S16-Ma03697
Date Sampled			Mar 82, 2016	Mar 02, 2016	Mar 02, 2016
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	_) = (
Chrysens	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001		-
Fluorene	0.001	mg/L	< 0.001		-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	ш	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenenthrene	0.001	mg/L	< 0.001	-	5#6
Pyrene	0.001	mg/L	< 0.001	-	<u> </u>
Total PAH*	0.001	mg/L	< 0.001		_
2-Fluorobiphenyl (surr.)		%	66	16	<u> </u>
p-Terphenyl-d14 (surr.)	111	%	71	2	
Total Recoverable Hydrocarbons - 2013	NEPM Fractions				
TRH >C10-C16	0.05	mg/L	< 0.05		
TRH >C16-C34	0.1	mg/L	< 0.1		
TRH >C34-C40	0.1	mg/L	< 0.1	-	-

Sample History

Where samples are submitted/analysed over several days, the lest date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method returnos information on reports has changed. However, no substantive change has been made to our interrupt methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
TRH C8-C10 less BTEX (F1)	Sydney	Mar 04, 2016	14 Day
- Method: LM-LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Mar 05, 2016	7 Day
- Method: TRH C8-C36 - LTM-ORG-2010			
BTEX	Sydney	Mar 04, 2016	14 Day
- Method: TRH C8-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 05, 2016	7 Day
- Method: TRM CS-C40 - LTM-ORG-2010			
Volatile Organics	Sydney	Mar 05, 2016	7 Day
- Method: E016 Valuatio Organic Compounde (VOC)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 04, 2016	7 Day
- Method: TRH C6-C40 - LTM-CRG-2010			
Eurofins mgt Suite B4			
Polycyclic Aromatic Hydrocarbons	Sydney	Mar 05, 2016	7 Day
- Method: E007 Polyarometic Hydrocarbona (PAH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 05, 2016	7 Day
- Method: TRIH CB-C40 - LTM-ORG-2010			
Heavy Metals (filtered)	Sydney	Mar 04, 2016	180 Day
•			

Brisbans 121 Smallwood Plans Mururin CLD 4172 Phora: +61 7 3602 4600 NATA # 1201 Sits # 20734

Melbourne 3-5 Kingelon Town Close Caldedigh VIC 3198 Phores : +61 3 6564 5000 NATA # 1261 Sits # 1254 & 14271

Sycholy Link EX. Building F 16 Mars Road Lains Corn Ween MW 2008 Pirons: +461 2 9000 8400 NATA & 1261 Sha & 48217

ABN - 50 005 085 521 c.mail: EnviroSales@eurofins.com.au web: www.surofins.com.au

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway

ENAURHOD04835AB

Project Name:

Chatawood NSW 2067

Company Name: Address:

Received: Due: Priority: Contact Name:

5 Day Matthew Locke

Mar 3, 2016 2:18 PM Mar 10, 2016

Eurofins | mgt Client Nanager: Charl Du Presz

BTEX and Volatile TRH	П	٦	×									×	×
Eurofina mgt Suite B4	П		×				×	×	×	×	×		
Lead (filtered)			×				×	×	×				
						LAB ID	S16-Me03691	S16-Ma03892	S18-Ma03883	S16-Mg03894	S16-Mm03696	S16-Ma03698	S16-Ma03697
		271				Matrix	Water	Water	Water	Water	Water	Water	Weter
Sample Detail	Inducted	its # 1254 & 14	#18217	● € 20794		Sampling							
	Laboratory where analysis is conducted	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA 8ths # 18217	Briebane Laboratory - NATA Sits # 20794	flory	Semple Date	Mer 02, 2018	Mar 02, 2016	Mar 02, 2018	Mar 02, 2016	Mar 02, 2018	Mer 02, 2016	Mer 02, 2018
	Laboratory whe	Melbourne Lab	Sydney Labora	Brisbane Labor	External Laboratory	Sample ID	NAW01	MW02	NAMO3	RB1	DUP1	田	T\$160301-2

internal Quality Control Review and Glossary

- 1. Laboratory QC results for Method Blanks, Duplicates, Metric Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be evaluate on request.
- 2. All not results are reported on a dry basis, unless otherwise stated.
- 5. Actual LORs are matter dependent. Quoted LORs may be reised where earnple extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered eampies, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interior results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For sample received on the last day of holding time, notification of testing requirements should have been received at least 8 hours prior to eample receipt deadlines as stated on the Sample

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to those may be outside the laboratory's control.

"NOTE: pH duplicates are reported as a range NOT as RPD

ing/kg: miligrams par Kilogram us/i: micrograms per litre ppb: Paris per billion

mg/l: milligrame per libra nam: Parts per million %: Percentage

org/100ml: Organisms per 100 millitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 militime

Terms

Dry

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOB

Limit of Reparting.

SPICE RPD

Addition of the entityte to the sample and reported as percentage recovery. Relative Percent Difference between two Duplicate pieces of analysis.

LCB

Laboratory Control Sample - reported as percent recovery Cartified Reference Material - reported as percent recovery

CRM

in the case of solid samples these are performed on laboratory certified clean sands.

Method Blank

In the case of water complex these are performed on de-kinless water.

Burr - Survocate

The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate Retch Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison. A second place of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of snalysis.

Batch BPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

UNEPA

ASLP

United States Environmental Protection Agency

APNA

American Public Health Association Australian Standard Leaching Procedure (Eurofine | ingl uses NATA accredited in-house method LTM-GEN-7010)

TOUR Toxicily Characteristic Leaching Procedure

COC Chain of Custody

SRA Serrol o Receipt Advice

Client Perent - QC was performed on sumples pertaining to this report

MEP Non-Client Parent - QC performed on samples not pertaining to title report, QC is representative of the sequence or batch that client earnpies were analysed within

TEC Toda Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 firms the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

erien : Recoverion must lin bebreen 50-150% - Phancis 20-130%.


QC Data General Comments

- 1. Where a result is reported as a less than (4), higher than the nominated LDR, this is due to either matrix hierference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the inhometory earupte batch at a 1:10 ratio. The Perent and Duplicate data shown is not data from your samples.
- 3. Organophiorine Pesticide analysis where reporting LCS data, Toxophene & Chlordene are not added to the LCS.
- 4. Organochlorine Positicide enalysis where reporting Spille date, Toxephene is not edided to the Spilles.
- 5. Total Recoverable Hydrocurbons where reporting Spike & LCS data, it eingle spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 call of the Report.
- 6. pH and Free Chlorine enalysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory enalysis is unitsely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Date (Spikes & Surrogales) where chromatographic Interference does not allow the determination of Recovery the term "ENT" appears against that analysis.
- 8. Polychlorinated Biphenyls are apliced only using Aradiar 1280 in Metrix Spiles and LCS.
- 9. For Makin Spikes and LCS results it dash "-" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from rew analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1000	
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pess	
Method Blank	الوثقاف المراجع المراجع			A XO	
STEX					
Benzane	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Hethod Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
/olatile Organics					
Naphthalene	mg/L	< 0.01	0.01	Pass	
Nethod Blank					
Polycyclic Arometic Hydrocarbons		T			
	mg/L	< 0.001	0.001	Pass	
Acenaphthene	mg/L	< 0.001	0.001	Pass	1
Acenaphthylene		< 0.001	0.001	Pass	1
Anthracene	mg/L		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001			-
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylane	mg/L	< 0.001	0.001	Pass	<u> </u>
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	-
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	-
Fluoranthens	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pasa	
Phenanthrene	mg/L	< 0.001	0,001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Wethod Blank	AT STATE OF THE STATE OF				
Total Recoverable Hydrocarbons - 2013 NEPM Fi	actions				
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	1
TRH >C18-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank				8 10	
Heavy Metals					
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery	A STATE OF THE STATE OF	100		وعوار	
Total Recoverable Hydrocarbons - 1999 NEPM Fi	actions				
TRH C6-C9	%	111	70-130	Pass	
TRH C10-C14	%	92	70-130	Pass	
LCS - % Recovery		TO THE REAL PROPERTY.			
BTEX		T		1	

	Test		Unite	Result 1	Acceptance Limits	Paas Limita	Qualifying Code
Benzene			%	98	70-130	Pass	
Toluena			%	104	70-130	Pass	
Ethylbenzene			%	89	70-130	Pass	
måp-Xylenes			%	94	70-130	Pass	
o-Xylene			%	90	70-130	Pass	
Xylenes - Total			<u>%</u>	93	70-130	Pass	
LCS - % Recovery		- V				,	ļ
Total Recoverable Hydrocari	bons - 2013 NEPN Frac	tions					
TRH C8-C10			1 %	104	70-130	Pass	
LCS - % Recovery							
Volatile Organics			T .			-	
Naphthalene			<u>%</u>	94	70-130	Pass	
LCS - % Recovery	2040 NEDW P					1	
Total Recoverable Hydrocari	oons - 2013 NEPM Frac	tions	T ~	D4		_	
Naphthelene TRH C6-C10			%	94	70-130	Pass	
LCS - % Recovery			76	104	70-130	Pass	
Polycyclic Aromatic Hydroca	rhone						
Acenaphthene	11 W 4119		%	91	70.400	P	_
Acensphiliviene			%	89	70-130	Pass	-
Anthracene			%	94	70-130 70-130	Pass	
Benz(a)anthracene			%	89	70-130	Pass	
Berizo(a)pyrene			%	88		Pass	
Benzo(b&j)fluoranthene			%	88	70-130 70-130	Pass	
Berizo(g.h.i)perylene			%	81	70-130	Pass	
Berizo(k)fluoranthene			%	87	70-130	Pass	
Chrysene			%	89	70-130	Pass	
Dibenz(a.h)anthracene			%	90	70-130	Pass	
Fluoranthena			%	94	70-130	Pass	
Fluorene			%	91	70-130	Pass	
Indeno(1.2.3-od)pyrene			%	88	70-130	Pass	
Naphthalene			%	88	70-130	Pass	
Phenanthrene			%	92	70-130	Pass	
Pyrene			%	92	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarb	ons - 2013 NEPM Frac	lons					
TRH >C10-C16			%	101	70-130	Pass	
.CS - % Recovery		415.00					
leavy Metals							
Lasd (filtered)			%	110	70-130	Pass	
Test	Lab Sample ID	QA Source	Unite	Result 1	Acceptance Limits	Page Limits	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarb	one - 1980 NEDM E	ione		Boout 4		1	
TRH C8-C9	S16-Ma02717	NCP	6/	Result 1	70.400		
Spike - % Recovery	J J IO-MIZUZ/1/	NOF	%	90	70-130	Pass	-
STEX				Beaut 4		- 11	
Benzene	S16-Ma02717	NCP	%	Result 1	70 400	Berr	
Toluene	S16-Ma02717	NCP	%	79	70-130	Pass	
Ethylbenzene	S16-Ma02717	NCP	%	87	70-130	Pass	
m&p-Xylenes	S16-Ma02717	NCP	%	92	70-130	Pass	
o-Xylane	S16-Ma02717	NCP	%	89	70-130 70-130	Pass	
	O TO THEOLET IT					Pass	
Xylenes - Total	S16-Ma02717	NCP	.96	91	70-130	Pass	

Test	Lab Sample ID	QA Source	Unite	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
TRH C8-C10	S16-Ma02717	NCP	%	93			70-130	Pass	
Spike - % Recovery								140	
Volatile Organics		u		Result 1					
Naphthalana	S16-Ma02717	NCP	%	92			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Lead (filtered)	S16-Ma03435	NCP	%	79			70-130	Pass	
Teet	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate						200			
Total Recoverable Hydroca	rbons - 1999 NEPM Frac	tions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Ma03416	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate	A TOTAL STATE					100			
BTEX				Result 1	Result 2	RPD			
Benzene	S16-Ma03416	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S16-Ma03416	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S16-Ma03416	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenea	S16-Ma03416	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S16-Ma03416	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S16-Ma03416	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate						باللب	419		
Total Recoverable Hydroca	rbons - 2013 NEPM Frac	lions		Result 1	Result 2	RPD			
TRH C6-C10	S16-Ma03416	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate	STATE SHAPE OF								
Volatile Organice				Result 1	Result 2	RPD			
Naphthalene	S16-Ma03416	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead (filtered)	S16-Ma03434	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Commente

Sample integrity	
Custody Seels intect (if used)	N/A
Altempt to Chill was evident	Yes
Surapio correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been autocontracted	No

Qualifier Co	des/Comments
Code	Description
N01	F2 is determined by arithmetically subtracting the "nephthalene" value from the ">C10-C16" value. The rephthalene value used in this calculation is obtained from volatiles (Purgs & Trap energy).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthaters data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are filely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAGC acceptance orderies, and are entirely technically valid.
N04	F1 is determined by antimetically subtracting the "Total STEX" value from the "C5-C10" value. The "Total STEX" value is obtained by aumming the concentrations of STEX enables. The "C5-C10" value is obtained by quantitating against a standard of mixed aromatic/alighatic analyses.
N07	Please note:- These two PAH isomers closely co-clube using the most contemporary ensigned methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-cluthor PAHs

Authorised By

Charl Du Presz Analytical Services Manager Senior Analyst-Metal (NSW) Ivan Taylor Ryun Hamilton Senior Analyst-Organic (NSW) Senior Analyst-Volatile (NSW) Ryan Hamilton

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

Uncertainty data is available on request

Booking the first section in the contract of t

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

Appendix F - Laboratory Results: Summary Tables

A Committee	
A	
A Marie Land	1
THE PARTY	ļ
Darles Corne	9
ļ	đ
1: Stoll And	
昰	

00 00 00 00 00 00 00 00 00 00 00 00 00	
9	
	· ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ ʊ
я	
a	· ਚੋੜਾਹਾਸ ਸ਼ਹਾਰੇ ਤੇ ਤੋਰ ਤੋਂ ਕੁਕਰ ਤੇ ਤੇ ਹਰ ਹਰ ਹਰ ਹਰ ਹੋ ਹੋ ਹੋ ਕਰ ਕਰ ਤੋਂ ਉੱਤੇ ਉੱਤੇ ਤੋਂ ਤੋਂ ਹਨ ਸ਼ਹਾਰੇ ਤੇ ਤੋਰ ਤੋਂ ਕਰ ਹੋ ਹੋ ਹਰ ਹਰ ਹੋ
aa	· · 생물의 자~ 자리 취임 중국 경기 공급 관리 관리 관리 관리 공급 공급 공급 및 관금 배용 기용 용용용용 · · · · · · · · · · · · · · ·
3	· · · · · · · · · · · · · · · · · · ·
3 · · · · · · · · · · · · · · · · · · ·	
2332nn53x	A
2 2 2 2 2 E E	2
a · 25 9 9 x 8 2 :	

1: Ook Antigkool Date Company Against Health Assumment Crimin Committee Committee Committee

						Park JD	-	0401/0.5-3.7	BH02/0.50.4	\$HCD/33-35	Central	COURT	PSGIANDS-0.2	BF03/7.9-20	HACLAGO ALS	WOLDON!	HADSADS-O.B	IIAOAOAOAIS	ILACT/U.D-G.15
						LeeCode	1	10880	1011	3	29405	2018	80400	8403	1401	EMET	2001	1001	1000
						Barrole, Days, Lange.	П	1547	9850	1145	11425	2445	0.05-6.1	797	005-015	2100	9050	State	0015
						Sampled Date The	31/07/10/92	MANA/1014	15,02/100.6	25,017,1016	25/02/2018	24/02/2015	21,007,001,85	25/05/2018	Stat/outs	MIDC/DD/SZ	NACO/2004	15/00/7004	2100/10/22
			NOW SELLINGS	Markette Ale	Section of the last of the las	MCPA TRESTON													
1	Onvitore	OI SAU		5	No.	D-earl													
	Fertition	me/m 0.5													SA	555	405	9	3
	Materion	Mary 0.5							×						£	20	3	3	9
	Methy paration	angles 0.5								,	4				20	19	2	9	9
	Mesinghos (Phosphin)	ALC BYON													28	3	3	g	100
	Monocotopies	Ot Eyem													979	90	430	410	Q15
	Parathlen	ma/u D.S													20	9	3	500	40.5
	Plents	me/u 0.5							٠					ä	45	60.5	5	403	SD
	Profesofiss	me/e 0.5						×	×		٠	٠			ą	500	500	55	500
	Prothistes	me/te 0.5													9	50	500	2	2
	Ronnel	mo/tr 6.5													\$	4	3	ş	20
	Strootes	me/nc d.5													200	505	ş	3	\$
	Trichioematic	myle 03										٠			50	40.5	20	500	500

Table 1: Bull Ansiyfost Date Conpress Against Exological Asses Cerrotion College, Toungabble

				Class D	BH03/0.4-0.5	18/03/35:37		BH02/0506 BH02/23-35	BMG3/0.05-0.2	BP03/19-20		HACT/DOS-015 HACZ/DD-015	HAGNOS-G.S.	HADA/D.G.15	HACKBOOTS
				loctode	BN01	BH01	SH02,	芸	BHOS	ECHID	HAGI	39402	HADS		HADS
			1	Sample, Doych, Tange	0.4-0.5	15-17	0.508	3533	0.05-0.2	19:1	0.05-0.15	0-0.15	0.5-0.6	0-0.35	9018
				Sampled Data-Time	25/02/2016	25/05/2016	25/02/2015	25/02/2016	25/02/2015	25/02/2018	3102/2018	25/02/2018	25/02/2016	23/00/2016	25/02/2015
				NEPA MISTEL/158. Perdentist & Neek Constant											
Method_Type	Chembleme	Chatte	TOT		-										
Misselaneous	Mohiture Contant (dried @ 1051)	*	21		9	10	12	10	24	2	129	92	15	35	13
and on the section of the section	pH (aqueous autract)	pht_Unit	070								8.6	6.6			
Heavy Metal	Armenic	m/A		8	•						99	27	20	п	30
	Cadastum	Ma/Sur	3								0.6	970	9	970	ğ
	Chromism	mens	*2	8		•			*	•	12	22	9	28	2
	Copper	mg/gg	2	OH.							Ħ	11	8	123	10
	Land	mg/g	2	0000	Ľ	2	74	n	140	300	170	200	×	8	2
	Mercury	mg/s	0.05							•	0.17	200	40.05	600	900
		B/Su	10	R						٠	3	17	22	64	7.4
	The	mg/kg	50	R	٠						310	83	s	250	180
MEX	Dentane	mg/gr	7	20	100	10	41	. P	40.1	9	4	40.1	10	40.1	8
	Ethybenzene	more.	7	2	40.1	3.9	411	20	46.1	3	100	140	2	40.1	180
	Toluene	mg/gm	10		100	on	41	0.2	6.1	19	10	<0.1	19	40.1	Ą
	Wyleno (m & p)	m/m	3		40.2	2	43	2.1	42	62	20	497	3	602	9
	Witness (c)	mg/s	3		Ą	7.6	9	7	19	100	7	9	5	491	10
	Tylene Total	mg/g	0.3	202	103	II.	63	3	633	100	93	10	500	103	10
MK	Dente(a)priene	mc/a	20	22	S.	50	S	200	485	500	50	3	505	40.5	905
	Rephitmens	E/Au	2	770	505	3	40.5	11	500	500	50	ą	50	500	80
ě	THAF (OF CHATEX)	me/u	20	3	8	130	8	×	8	8	8	8	8	000	8
	TAM F2 (CLO-CLG-Nephthalene)	2/84	3	21	95	8	95	8	\$	8	8	5	8	8	8
	THE GOLGE	mg/s	8	2	c100	000	4100	4100	C100	4100	900	-	800	400	4100
	200	mg/ga	901	200	<100	<100	4180	<100	CID CID	900	900	900	400	4100	900
8	100	me/m	100	180							**	200	1		

Table 3: Groundwater Analytical Data Compared Against Groundwater Assessment Criteria Campion College, Toongabble

				Field 10	_	MW02	DUP1	MW03
				LocCode	MW01	MW02	DUP1	MW03
				WellCode			MW02	
				Sampled_Date-Time	2/03/2016	2/03/2016	2/03/2016	2/03/2016
	8			ANZECC (2000) Freshwater Groundwater Investigation Lavels				
Group	ChemName	Units	LOR	RELIES OF THE PERSON				
Heavy Metal	Lead (Filtered)	1/811	0.001	3.4	<1	4	100	7
TPH	Naphthalene	1/811	10	16	<10	<10	<10	<10
	හ-න	1/8/1	20	20	2100	390	390	<20
	C10-C16	J/SH	20	05	80	<50	<50	2 20
	C16-C34	7/8H	100	100	<100	<100	<100	₩
	C34-C40	1/8/1	100	100	<100	<100	<100	Ø₽
PAH	Acenaphthene	1/84	1		7	. 1	<1	7
	Acenaphthylene	1/8#	1		4		<1	7
	Anthracene	Hg/L	1	THE RESERVE STREET	7	4	<1	₽
	Benzo(a)anthracene	1/8/1	11		7	4	<1	7
	Benzo(a)pyrene	1/84	1		7	4	<1	7
	Benzo(g.h,i)perylene	1/8/1	1		1>	7	۲۰	₹
	Benzo(k)fluoranthene	Hg/L	1		₽	7	7	₹
	Chrysene	1/81	1		Þ	1>	<1	₽
	Benzo[b+j]fluoranthene	1/84			7	-1	<1	4
	Dibenz(a,h)anthracene	1/84	н		₽		-41	۲
	Fluoranthene	1/SH	1		1>	4	<1	₹
	Fluorene	1/8/1	1		1>	7	<1	7
	Indeno(1,2,3-c,d)pyrene	1/8H	п		7	4	4	4
	Naphthalene	1/8/1	1	16	₽	7	17	⊽
	Phenanthrene	Mg/L	1		7	4	-1	₽
	Pyrene	Hg/L	1		۲	₽	⊽	₽
	Total PAHs	1/8/1	1		1>	7	4	7
Volatile	Benzene	1/84	1	820	150	77	26	⊽
	Ethylbenzene	Hg/L	1	80	110	18	17	⊽
	Toluene	1/84	1	180	520	84	88	7
	Xylene (m & p)	1/8H	2	75	330	53	20	4
	Xylene (o)	1/8/1	1	350	220	32	38	⊽
	Xviene Total	1/211	3		260	92	68	8

Table 4: Comparison of Primary Duplicate Soil Bemplee Cemplon College, Toongabbie

			OF STREET	BH02/3.3-3.5	DUPI		BH02/3.3-3.5	DUPIA	
			Loccode	BH02	BH02	A COM		BHOZ	
			Sample Depth Range	\$3-3.5	3.9-9.5	Ę	13-13	33-3.5	Kode
1	1		Sempled Data-Time	25/02/2016	25/02/2016		25/02/2016	25/02/2016	
		CARTS	TO TO						
Scellansons	Wolffun Content (dried @ 108*C)	×	_	10	23	26%	91	9.3	×
	pH (aqueous extract)	pH Units	0.1	•		•			
Heinvy Metal	Amenic	mg/kg	2	0	•				
	Cadmius	mg/kg	6.4	(5)					
	Chromium	me/kg	2	•					
	Copper	mg/kg	5				,		ľ
	Laud	me/be	5	21	10	106	2	d	100
	Mercury	marker	100		1	200	1	4	TOTAL
	Michel								-
	NICKE IN COLUMN TO A COLUMN TO	TO THE	0				•		•
	Zanc.	THEFT	n			ě			
Aspestos	Asbestos								•
ឥ	Benefitte	merke	1.0	401	<0.1	٠	40.1	<0.2	
	Ethylpanaene	mg/leg	0.1	974	970	40%	29	60.5	
	Tolugue	me/lig	0.1	3	60	40%	07	5	
	Xylene (m ft. p)	mg/kg	0.2	17	2.5	173	17	40.5	
	Xylene (o)	me/bg	0.1	77	2	10%	27	40.5	
	Xyleme Total	ng/g	0.3	5	4.5	985	17	40.5	
PAH	Acenephthene	mg/kg	0.5	40,5	AQ.5		505	65	
	Acenaphithylene	mg/bg	0.5	505	40.5	٠	9	405	
	Anthracene	mg/kg	9.5	40.5	40.5		20	40.5	•
	Benzo(e)enthracene	me/kg	0.5	<0.5	<0.5	۰	40.5	<0.5	,
	Benzo(a)pyrane	medig	9:0	40.5	<0.5	•	40.5	505	į.
	Benzo(g,h,l)perytene	me/kg	0.5	<0.5	<0.5	•	40.5	40.5	•
	Benzo(k)fluorenthem:	mg/kg	6.5	40.5	<0.5	•	40.5	20	
	Chrysene	mg/kg	0.5	505	<0.5		40.5	50	
	Benzo(b-ijfkuoranthena	merke	0.5	40.5	<0.5	•	50>	40.5	
	Olbana(a,h)anthracere	mg/kg	0.5	40.5	CB.5		405	â	5
	Ruoranthane	me/le	0.5	Q.5	<0.5		\$0.5	40.5	
	Fluorens	mg/kg	978	40.5	<0.5	·••	40.5	505	•
	Indeno(1,2,3-c,d)pyrime	me/le	0.5	40.5	<0.5		500	505	
	Nighthelene	me/la	0.5	40.5	<0.5	٠	40.5	505	•
	Phenanthrene	mg/kg	0.5	6	<0.5	•	505	20	22.
	Pyrane	mg/kg	0.5	20	<0.5	•	205	30	•
	Total PAHs	mg/la	0.5	40.5	45	1	500	20	
TEL	TRH F1 (C6-C9-6TEX)	mg/lkg	20	**	33	3%	*	95	
	TNH F2 (C10-C15-Naphthalane)	mg/hg	25	95	99	S.	8	95	
	Naphthalene	mg/lg	0.5	1.8	17	15%	2	7	
	TRH F3 (C16-C34)	mg/tg	100	C100	QQT>		<100	9017	
	TRH F4 (C34-C40)	mg/kg	100	<100	0012		000	000	
	CID-CI4	mg/kg	20	8	620		8	8	
	CLS-C28	mg/kg	95	\$ 0	8	*	8	00T>	
	29.05	me/kg	20	8	8	7	8	900	
	C10 - C36 (Sum of total)	me/be	28	8	5	(*)	ş	100	

Table 5: Comparison of Primary Duplicate Groundwater Samples Campion College, Toongabbie

			Fleid_ID	MW02	DUP1	RPD %
		1	LocCode	MW02	DUP1	
		1	WellCode		MW02	
			Sampled_Date-Time	2/03/2016	2/03/2015	
Method_Type	ChemName	Units	EOT			
Henry Metal	Lead (Filtered)	μ <u>e</u> /L	0.001	<1	7.	
TPH	Naphthalene	µg/L	10	<10	<10	Ľ.
	C6 - C9	μ g /L	20	390	390	0%
	C10-C16	µg/L	50	<50	<50	-
	C16-C34	µg/L	100	<100	<100	
	C34-C40	µg/L	100	<100	<100	-
PAH	Acenaphthene	μ g/ L	1	<1	<1	-
	Acenaphthylene	hæ/r	1	<1	<1	
	Anthracene	μg/L	1	<1	<1	- 5
	Benzo(a)anthracene	µg/L	1	<1	<1	- 4
	Benzo(a)pyrene	µg/L	1	<1	<1	
	Benzo(g,h,i)perylene	µg/L	1	<1	<1	
	Benzo(k)fluoranthene	μg/L	1	<1	<1	
	Chrysene	µg/L	1	<1	<1	
	Benzo[b+j]fluoranthene	μg/L	1	<1	<1	- 1
	Dibenz(a,h)anthracene	µg/L	1	<1	<1	-
	Fluoranthene	µg/L	1	<1	<1	
	Fluorene	µg/L	1	<1	<1	Ĭ.
	Indeno(1,2,3-c,d)pyrene	μg/L	1	<1	<1	-
	Naphthalene	μg/L	1	<1	<1	
	Phenanthrene	μg/L	1	<1	<1	-
	Pyrene	µg/L	1	<1	<1	
	Total PAHs	μ g /L	1	<1	<1	-
/olatile	Benzene	µg/L	1	27	26	4%
	Ethylbenzene	µg/L	1	18	17	6%
	Toluene	µg/L	1	84	88	5%
	Xylene (m & p)	μg/L	2	53	50	6%
	Xylene (o)	μg/L	1	39	39	0%
	Xviene Total	μ g/ L	3	92	89	3%

This page has been left intentionally blank